的原理:对操纵信号通路的当前理解,以产生所有分泌激素的内分泌细胞类型(即,从诱导的多能干细胞(IPSC)中)具有所有主要分泌激素的内分泌细胞类型(即α,β,β,δ和γ细胞)的理解。但是,供体胰岛短缺需要我们在体外产生功能性胰岛。在这项研究中,我们旨在找到脱细胞的胰腺外基质(DPECM)蛋白,以利用信号通路并促进功能性IPSC胰岛胰岛器官发生。方法:我们进行了蛋白质组学分析,以识别猪和大鼠DPECM的关键胰岛促进因子。这样,我们将II型胶原蛋白(COL2)确定为一种潜在的生物材料提示,可以认可IPSC的胰岛发育。使用全球转录组分析,基因集富集分析,免疫荧光显微镜,流式细胞术,蛋白质印迹和葡萄糖刺激的激素分泌分析,我们检查了COL2在调节IPSC胰腺pancreatic谱系规范和信号通路方面的作用,对等初学和等级有机化和形成。结果:我们发现COL2充当了一种功能性生物材料,可增强IPSC的胰岛发育,类似于胶原蛋白型V(COL5),如我们先前的研究中所报道的。col2基本上刺激了内分泌祖细胞和随后的胰岛类器官的形成,其胰腺签名基因和蛋白质表达显着升高。此外,它增强了胰岛对激素分泌的葡萄糖敏感性。结论:我们证明了DPECM在精炼干细胞分化微环境中的至关重要的作用,以进行器官发育和成熟。与各种信号通路相关的基因表达簇,包括但不限于氧化磷酸化,胰岛素分泌,细胞周期,规范WNT,缺氧和干扰素反应,受到Col2和Col5提示的极大影响。我们关于干细胞规范,器官发生和成熟的生物材料刺激信号传导的发现,为增加内分泌组织的分化疗效提供了一种新方法,这可以有助于生物学功能性胰岛的产生。
1. 武汉大学中南医院泌尿外科,武汉 2. 武汉大学中南医院泌尿外科湖北省重点实验室,武汉 3. 武汉大学中南医院放射科,武汉 4. 武汉大学中南医院湖北省人类遗传资源保藏中心生物样本库,武汉 5. 中关村欧拉科技,北京 6. 北京大学生命科学学院定量生物学中心,北京 7. 中国医学科学院武汉传染病肿瘤研究中心,武汉 8. 武汉大学医学研究所,免疫与代谢前沿科学中心,泰康生命与医学科学中心,武汉 9.
1.山东大学齐鲁医院骨科、山东大学骨科中心、山东大学齐鲁医学院,济南 250012。2.山东大学高等医学研究院,济南 250012。3.山东大学齐鲁医学院山东大学第二医院,济南 250033。4.天津医科大学总医院骨科、脊髓损伤国际科技合作基地、天津市脊柱脊髓重点实验室,天津 300052。5.齐鲁工业大学(山东省科学院)先进材料研究院,济南 250014。6.山东大学生殖医学中心,山东济南 250012。
理由:急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)是一种关键综合征,死亡率高达40%,其特征是突出的炎症级联反应。通过用作炎症反应的关键信号平台来调节各种炎症相关疾病,炎症体和热吞作用在调节各种炎症有关的疾病中起着至关重要的调节作用,并介导了大量炎症因素的释放。我们先前的研究证实,GC-1是一种临床甲状腺激素类似物,通过恢复上皮细胞中的线粒体功能有效地减轻肺纤维化。然而,GC-1对巨噬细胞炎症体组装和肺损伤中的凋亡以及基础机制的潜在影响尚不清楚。方法:通过评估肺病理学,BAL液体中IL-1β和IL-18的浓度,评估了GC-1对肺损伤,氧化损伤和炎症的影响,在ALI(LPS或HCL诱导的模型)中评估了氧化损伤和炎症。此外,通过检查小鼠肺泡巨噬细胞中的ROS水平,NRF2信号传导和炎性体适配器蛋白ASC水平,研究了GC-1对ROS介导的炎性体组装和热吞作用的影响。NRF2抑制剂ML385和线粒体ROS抑制剂Mito-Tempo用于进一步阐明GC-1对NRF2-P53-ASC途径的影响。一致地,GC-1抑制了巨噬细胞中的ASC募集和寡聚化,这抑制了IL-1β和IL-18的Gasdermin d介导的释放。结果:GC-1显着缓解了ALI模型小鼠的炎症和肺损伤,如肺病理学,炎症细胞因子水平,ROS产生和投射率所示。这些发现表明炎性体组装和凋亡开始减少。进一步的研究表明,GC-1可以通过NRF2信号传导来减轻线粒体损伤引起的氧化应激,从而抑制ROS激活的p53和靶基因ASC的表达。ML385可以逆转GC-1的这种保护作用,并通过mito-tempo模仿。结论:本研究提出了一种治疗ALI的新机制,其中GC-1抑制了通过NRF2-P53-ASC途径抑制巨噬细胞ROS介导的炎性体组装和pyproptosis。这些发现突出了将GC-1用作抗炎和抗氧化剂在治疗ALI/ARDS中的有希望的潜力。
pannexin1(panx1)是一种糖蛋白,在整个脊椎动物组织中无处不在。在细胞膜中,它形成非选择性半通道(Panx1 HC),允许释放ATP。这种细胞外ATP触发与病原体(包括病毒)免疫反应有关的嘌呤能信号。虽然已知Panx1 HC的活性被某些病毒升高,但潜在的分子机制仍然难以捉摸。方法:在这项研究中,我们使用了poly(i:c),这是一种构成病毒感染标志的双链RNA类似物。腹膜巨噬细胞是从野生型和panx1敲除小鼠那里获得的。通过RT-QPCR定量促炎细胞因子的mRNA水平。我们还通过染料摄取测定评估了半通道活性,而使用Fura-2和GCAMP6研究了Ca 2+信号。PANX1-P2X 7 R相互作用通过接近连接测定研究。结果:PANX1表达和活性对于RAW264.7细胞和腹膜巨噬细胞中Poly(I:C)诱导的促炎反应至关重要。在用MPANX1(HELA-MPANX1)和RAW264.7细胞转染的HeLa细胞中,Poly(I:C)以浓度依赖性方式增加了PANX1 HC活性,这受到10 Panx1的抑制,这是一种选择性地阻止PANX1 HC的肽。此外,poly(i:c)诱导的PANX1 HC活性的上升与细胞内Ca 2+信号的迅速增加相关,这取决于TLR3和P2X 7 R活性。有趣的是,持续暴露于poly(i:c)促进了panx1-p2x 7 r复合物的相互作用和内在化,取决于CAMKII,PANX1 HC和P2X 7 R活性。通过使用BAPTA-AM,使用KN-62的CAMKII阻塞或使用DB-CAMP激活PLY(I:C)诱导的PANX1 HC活性的增加完全阻止了Ca 2+螯合。这些发现与来自Panx1突变体的数据一致,这些数据避免或模仿激酶靶位点的磷酸化。支持这一发现,我们证明了CAMKII活性对于巨噬细胞中聚(I:C)触发的炎症反应至关重要。结论:TLR3/CA 2+/CAMKII/PANX1 HC途径对于策划对病毒模式的细胞反应至关重要,并提出了预防感染和减轻与基于RNA的基于RNA的病毒感染的有害作用的潜在新型目标。
1。新加坡新加坡国立大学Yong Loo Lin医学院诊断放射学系。 2。 Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。 3。 新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。 4。 纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。新加坡新加坡国立大学Yong Loo Lin医学院诊断放射学系。2。Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。 3。 新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。 4。 纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。Theranostics卓越中心,Yong Loo -Lin医学院,新加坡国立大学,新加坡Helios,Helios 11 Biopolis Way,新加坡138667,新加坡。3。新加坡新加坡国立大学的Yong lin医学学院转化医学中心,新加坡,临床成像研究中心。4。纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。 5。 Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。 6。 精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。 7。 美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。纳米医学转化研究计划,NUS纳米医学中心,新加坡新加坡国立大学Yong Loo Lin医学院。5。Curanosticum Wiesbaden-Frankfurt,晚期放射性分子精度肿瘤学中心,德国威斯巴登。6。精确肿瘤学院,国际精确肿瘤学中心(ICPO),德国威斯巴登。7。美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。 8。 德国美因茨的约翰内斯·古腾堡大学Triga化学系。美国纽约州纽约州纽约市纽约大学兰蒙医学中心放射学系。8。德国美因茨的约翰内斯·古腾堡大学Triga化学系。
目的:确定从尼日利亚科吉州阿尼格巴采集的土壤样本中分离的链霉菌属次级代谢物的抗菌、抗溃疡和细胞毒活性。方法:使用盐水虾致死率测定法对不同浓度(62.5、125、250、500、1000 mg/mL)的次级代谢物或参考 K 2 Cr 2 O 7 进行链霉菌次级代谢物的细胞毒活性(浓度范围:62.5 – 1000 mg/mL)。使用白化大鼠溃疡的阿司匹林和乙醇模型评估抗溃疡活性。五组动物,即三组预处理组,其提取物口服浓度为 100 和 200 mg/kg,一组预处理组以奥美拉唑 (30 mg/kg) 作为标准,另一组口服 2 mL/kg 生理盐水 (对照)。使用微量稀释法研究抗菌和抗真菌活性。结果:细胞毒性试验表明,与对照组相比,提取物浓度为 12.5 至 62.5 mg/mL 的毒性较小。对于抗溃疡活性,第 1 组动物表现出白细胞粘膜浸润、上皮细胞大量脱落和细胞出血,而第 2 组有轻度组织糜烂和小溃疡。在 3 至 5 组中,与 100 mg/kg 相比,200 mg/kg 提取物表现出出色的细胞保护作用和熟练的治疗能力,没有明显的副作用,而标准组表现出一些副作用,粘液细胞明显减少(p < 0.05)。次级代谢产物抑制了与溃疡有关的生物(幽门螺杆菌、大肠杆菌、弯曲杆菌属和链球菌属),发挥了治疗作用并保护大鼠免受溃疡。结论:从链霉菌属中分离的次级代谢产物对上皮组织无毒,具有抗菌和抗溃疡活性,因此具有作为抗消化性溃疡药物重要来源的潜力。关键词:抗溃疡、次级代谢产物、细胞毒活性、链霉菌属
1。上海肠道疾病研究所,上海第十人医院隶属于汤吉大学,200072年上海,中国上海。2。张上海胰腺疾病研究所胃肠病学系,昌伊医院;国家主要的免疫与炎症实验室,海军医科大学,200433年上海,中国。3。上海医院医学院上海癌症研究所,上海乔汤大学,200030年上海上海。 4。 中国医学科学研究所,澳门,SAR SAR 999078 Taipa MACAU,中国医学研究所的国家主要研究实验室5. 福丹大学中山医院临床科学研究所,200032年上海,中国6。 上海第十人医院病理学系,隶属于汤吉大学,200072年上海,中国上海。 7。 肠道微环境治疗中心,上海第十人医院隶属于汤吉大学,200072年上海上海。 8。 上海第十人医院儿科,隶属于汤吉大学,200072年上海,中国上海。 9。 中央医学中央实验室科学与技术创新公园,上海第十人医院隶属于汤吉大学,200435年上海,中国上海。 10。 Hainan大学生命科学学院,中国Haikou 570228。上海医院医学院上海癌症研究所,上海乔汤大学,200030年上海上海。4。中国医学科学研究所,澳门,SAR SAR 999078 Taipa MACAU,中国医学研究所的国家主要研究实验室5.福丹大学中山医院临床科学研究所,200032年上海,中国6。上海第十人医院病理学系,隶属于汤吉大学,200072年上海,中国上海。 7。 肠道微环境治疗中心,上海第十人医院隶属于汤吉大学,200072年上海上海。 8。 上海第十人医院儿科,隶属于汤吉大学,200072年上海,中国上海。 9。 中央医学中央实验室科学与技术创新公园,上海第十人医院隶属于汤吉大学,200435年上海,中国上海。 10。 Hainan大学生命科学学院,中国Haikou 570228。上海第十人医院病理学系,隶属于汤吉大学,200072年上海,中国上海。7。肠道微环境治疗中心,上海第十人医院隶属于汤吉大学,200072年上海上海。8。上海第十人医院儿科,隶属于汤吉大学,200072年上海,中国上海。9。中央医学中央实验室科学与技术创新公园,上海第十人医院隶属于汤吉大学,200435年上海,中国上海。10。Hainan大学生命科学学院,中国Haikou 570228。Hainan大学生命科学学院,中国Haikou 570228。
放射性皮肤损伤(RISI)是核事故和肿瘤放射治疗后常见的并发症。相关副作用可能包括红斑、脱屑、溃疡,严重情况下甚至导致某些皮肤组织坏死。这些不良反应严重影响患者的生活质量,造成心理困扰和经济负担。然而,目前尚无治疗和管理RISI的标准化方案。与传统药物相比,生物材料因其优异的生物相容性和出色的功能性,在治疗放射性疾病方面受到越来越多的关注。然而,关于这一主题的全面综述仍然很少。在此背景下,本文系统地阐明了RISI的发病机制,随后介绍了RISI的临床表现和治疗进展。它强调全面讨论旨在治疗和预防RISI的新型生物材料的设计和创新,同时也说明了多功能生物材料增强放射诱导皮肤病治疗效果和保护措施的机制。最后,本文探讨了多功能生物材料在治疗放射相关疾病方面所面临的挑战,并概述了未来研究的潜在方向。本综述旨在探讨多功能生物材料对放射性皮肤损伤的治疗和保护作用,从而为创新材料的设计和临床应用提供重要的参考价值。
摘要 药物发现是一个复杂、昂贵且耗时的过程,通常需要十多年的时间和数十亿美元的资金才能发现新的治疗化合物。人工智能 (AI) 的最新进展改变了这一领域,使更高效、更具成本效益和创新的方法成为可能。本文探讨了人工智能在药物发现各个阶段的应用,从目标识别到化合物筛选和毒性预测。机器学习和深度学习技术被强调为提高预测准确性、优化分子特性建模和改进高通量筛选过程的关键贡献者。尽管它具有变革潜力,但数据质量、监管障碍和人工智能模型的“黑箱”性质等挑战仍然存在。通过解决这些限制,人工智能驱动的药物发现有望加速救命疗法的开发,同时降低成本和上市时间。关键词:人工智能、药物发现、机器学习、深度学习、高通量筛选。