纳米技术是科学、工程和技术的一个分支,涉及原子或分子尺度上小于 100 纳米物质的尺寸和公差。纳米粒子由于其独特的尺寸依赖性而具有广泛的应用(Lu 等人,2012 年)。磁性纳米粒子因其广泛的应用而备受关注,例如蛋白质和酶的固定、生物分离、免疫测定、药物输送和生物传感器。纳米粒子由于尺寸小而具有较高的表面积与体积比,这赋予了纳米粒子非常独特的特性(Sagadevan 等人,2015 年)。纳米粒子独特的化学和物理性质使其非常适合设计新的和改进的传感设备;尤其是电化学传感器和生物传感器(Wang 等人,2016 年)。纳米粒子的重要功能包括固定生物分子、催化电化学反应、增强电极表面与蛋白质之间的电子转移、标记生物分子甚至作为反应物 (Luo et al. 2006))。一般来说,金属氧化物纳米粒子是无机的。Fe、Ni、Co、Mn 和 Zn 等各种纳米粒子是广泛接受的磁性材料,可用于磁传感器、记录设备、电信、磁性流体和微波吸收器等广泛应用 (Zhu et al. 2014;Poonguzhali et al. 2015)。在各种金属氧化物纳米粒子中,二氧化锰是一种重要的 P 型过渡金属氧化物
b'Abstract:先兆子痫是一种异质和多器官心血管疾病的怀孕。在这里,我们报告了一种基于灯笼的侧面转换纳米颗粒的新型基于带状的横向流量测定法(LFA)的开发,该纳米颗粒与靶向两个不同的生物标志物的抗体相结合,以检测前启示性的前子症。使用ELISA,我们首先测量了早期发作前脱位(EOPE)的个体的循环血浆FKBPL和CD44蛋白浓度。我们确认CD44/FKBPL比在EOPE中降低,具有良好的诊断潜力。使用我们的快速LFA原型,我们获得了提高的检测下限:FKBPL的10 pgml 1,CD44的15 pgml 1,比标准ELISA方法低一个以上。使用临床样本,CD44/FKBPL比的截止值为1.24,可提供100%的正预测值,而负预测值为91%。我们的LFA表现为子痫前期快速且高度敏感的护理测试。
摘要。在这项工作中,通过拉曼光谱法研究了质子照射和铂杂质对硅样品晶体结构的影响。已经确定,具有铂的Si的单晶掺杂会导致小变化和拉曼光谱中新振动的出现。在521 cm – 1处主硅峰的强度降低了1.6倍,而其FWHM实际上没有变化,约为4.0 cm – 1。这种峰强度的降低可能是由于PT扩散而导致硅晶格结构中键的键和破坏。表明,在Si 光谱中60–280 cm1范围内的新振动的出现与元素PT的存在和PTSI的形成有关。已经发现,具有600 keV质子的Si 样品的照射会导致拉曼光谱发生变化,而PT和/或PTSI的峰消失了。
本文档是公认的手稿版本的已发表作品,该作品以Nano Letters的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acs.nanolett.2C03427。
量子电子器件,例如量子点接触 (QPC) 和量子点,因具有电自旋控制的潜力而引起了人们对自旋电子学和量子信息处理应用的极大研究兴趣 1–6。这些器件可能构成未来量子电路的构建块,例如基于大量相同量子点使用 QPC 作为电荷传感器的量子比特阵列。为了实现大规模可制造性,首先必须建立可重复性,使得集成电路中的每个组件具有相同的工作参数。传统上,调制掺杂结构已用于量子电子器件,因为其易于制造。然而,随机分布的电离供体的背景静电势大大降低了可重复性 7,8。这种内在的可变性可以通过利用完全未掺杂的结构来避免,通过对金属顶栅施加适当的偏置将电荷载流子限制在异质界面处 9-12 。这些结构有许多优点,包括提高迁移率 13 、提高热循环特性 14 ,以及我们将在这里展示的量子传输特性的优越性。量子点接触是连接两个二维储层的窄一维通道,是最简单的栅极定义量子装置类型,使其成为研究可重复性 7,15,16 的理想选择。我们首先问一个问题:如果在同一晶圆上制造几个相同的装置,它们会表现出相同的行为吗?为了研究这个问题,我们在调制掺杂和未掺杂的晶圆上制造了 18 个名义上相同的 QPC,并观察定义和夹断一维通道所需的栅极偏置。我们还研究了 QPC 通道内电导量子化和静电势的均匀性,以及热循环下的可重复性。为了进行比较,我们还研究了空穴 QPC 中的可重复性。基于 III-V 半导体系统的空穴量子器件最近引起了广泛关注,因为它们
DirectLase 是 OFS Fitel, LLC 的商标。OFS 保留随时更改本文件中描述的价格和产品的权利,恕不另行通知。本文件仅供参考,不旨在修改或补充任何 OFS 产品或服务的保证或规格。
DirectLase 是 OFS Fitel, LLC 的商标。OFS 保留随时更改本文件中描述的价格和产品的权利,恕不另行通知。本文件仅供参考,不旨在修改或补充任何 OFS 产品或服务的保证或规格。
通过固相反应制备了 Nd 3 + 掺杂的 Y 3 Al 2 Ga 3 O 12 石榴石陶瓷颗粒,并以此为原型研究 Nd 3 + 激活石榴石荧光粉作为低温和高温范围玻尔兹曼温度计的潜力。尽管近红外发射 Nd 3 + 激活荧光粉通常用于生物应用,但它们的实际用途受到生理温度范围内低灵敏度的阻碍。相反,100 800 K 范围内的光致发光分析在低温和高温范围内都表现出有趣的性能。事实上,通过利用 4 F 3 / 2 的斯塔克能级(Z 能级)以及 4 F 5 / 2 和 4 F 3 / 2 激发态的发射率,可以在同一材料中构建两个可靠的玻尔兹曼温度计,分别在低温范围(100 220 K)和高温(300 800 K)下工作。
摘要 摘要 © 2020 Elsevier BV Li2S 作为锂硫正极材料的潜在候选材料的商业化因其低电子电导率、“穿梭效应”和初始能垒而受到阻碍。在这项工作中,通过基于溶液的化学方法制备了纳米级 Li2S 颗粒涂覆的碳纳米纤维。受益于这种合成方法,可以获得均匀的 Li2S 层而没有任何团聚。由于 Li2S 颗粒的尺寸较小,在第一次充电过程中观察到较小的能垒,这意味着以较小的截止电压更容易激活 Li2S。此外,碳纳米纤维作为基质可以增强正极的导电性。此外,为了验证所制备材料的潜在实际应用价值,我们制备了活性材料负载量高(约 3 mg cm−2)的 Li2S 正极,其表现出优异的循环和倍率性能,在 0.1C 时初始比容量为 916.2 mA hg−1,在 2 C 时仍可达到 321 mA hg−1 的容量。这种良好的性能可以归因于独特的基于溶液的合成方法,从而获得了涂覆在碳纳米纤维上的小而均匀的 Li2S 颗粒。
半导体P - i -n异质结构被广泛用作辐射探测器,并在光电子中具有多种应用[1-4]。在这种半导体结构中的能量吸收高于禁止带宽度的光导致电子孔对产生。对,在耗尽的I -Area中产生或从I -Area到掺杂n-和P-层的深度的扩散长度的距离与电场分开,因此电流出现在外部电路中[4]。光电流值将用载体的漂移电流定义,该载体在I -Area中产生,以及在I -Area外产生的载体的扩散电流。在某些条件下,半导体结构的光响应可以检测到多个各种量子振荡事件。例如,由于光电声发射的光激发电子和孔的放松导致光电流振荡,具体取决于刺激光子的能量[5]。在GAAS/ALAS或INGAN/GAN P -I -N超晶格中观察到来自偏置电压的光电流振荡[6,7]。在工作[8]中,研究了P - I -N-二极管在光谱光谱上的I -i -i -n-二极管中的INAS层的影响,并显示了此类异质系统对创建敏感光探测器的效率。后来,在这样的单屏障GAAS/ALAS异质结构中(见图1)在辐照时观察到巨大的光电流振荡[9,10],光子能量高于GAA中的光子能量高于禁止带宽度,而GAA中的光子宽度高,这似乎是多种共振 - 类似于Volt-Ampere特性(VAC)的特殊性。振幅为光电流时的平均光值的20%,其光线为λ= 650 nm,而在具有单个隧道屏障的p - i -i -n -diodes中,这是不可能的,这是不可能的。观察到了那个时期