1。Pires DP,Melo LDR,Azeredo J.了解生物膜群落中复杂的噬菌体 - 宿主相互作用。病毒学年度审查。2021; 8:73–94。doi:10.1146/annurev-病毒学-091919-074222 2。Bond MC,Vidakovic L,Singh PK,Drescher K,Nadell CD。基质捕获的病毒可以通过定植细胞来防止细菌生物膜侵袭。Shou W,Storz G,Shou W,编辑。Elife。 2021; 10:e65355。 doi:10.7554/elife.65355 3。 BrüssowH,Hendrix RW。 噬菌体基因组学:小是美丽的。 单元格。 2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。Elife。2021; 10:e65355。doi:10.7554/elife.65355 3。BrüssowH,Hendrix RW。噬菌体基因组学:小是美丽的。单元格。2002; 108:13–16。 doi:10.1016/s0092-8674(01)00637-7 4。 lwoff A.溶因子。 Bacteriol Rev. 1953; 17:269–337。 5。 Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。 自然。 2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2002; 108:13–16。doi:10.1016/s0092-8674(01)00637-7 4。lwoff A.溶因子。Bacteriol Rev.1953; 17:269–337。5。Mann NH,Cook A,Millard A,Bailey S,Clokie M.病毒中的细菌光合作用基因。自然。2003; 424:741–741。 doi:10.1038/424741a 6。 Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。 氰化物编码的肽畸形酶的结构和功能。 isme J. 2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2003; 424:741–741。doi:10.1038/424741a 6。Frank JA,Lorimer D,Youle M,Witte P,Craig T,Abendroth J等。氰化物编码的肽畸形酶的结构和功能。isme J.2013; 7:1150–1160。 doi:10.1038/ismej.2013.4 7。 Allison GE,Verma nk。 shigella flexneri中的血清型转换噬菌体和O-抗原修饰。 微生物学的趋势。 2000; 8:17–23。 doi:10.1016/s0966- 842x(99)01646-7 8。 Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。 噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。 抗生素(巴塞尔)。2013; 7:1150–1160。doi:10.1038/ismej.2013.4 7。Allison GE,Verma nk。shigella flexneri中的血清型转换噬菌体和O-抗原修饰。微生物学的趋势。2000; 8:17–23。doi:10.1016/s0966- 842x(99)01646-7 8。Shahed-Al-Mahmud MD,Roy R,Sugiokto FG,Islam MDN,Lin M-D,Lin L-C等。噬菌体φab6-传播解聚酶打击鲍曼尼杆菌的生物膜形成和感染。抗生素(巴塞尔)。2021; 10:279。doi:10.3390/ant antibiotics10030279 9。Waldor MK,Mekalanos JJ。通过编码霍乱毒素的丝状噬菌体转化。科学。1996; 272:1910–1914。 doi:10.1126/science.272.5270.1910 10。 O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1996; 272:1910–1914。doi:10.1126/science.272.5270.1910 10。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。 shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。 科学。 1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。O'Brien AD,Newland JW,Miller SF,Holmes RK,Smith HW,正式SB。shiga样毒素 - 从大肠杆菌菌株中转化噬菌体,引起出血性结肠炎或婴儿腹泻。科学。1984; 226:694–696。 doi:10.1126/science.6387911 11。 Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 226:694–696。doi:10.1126/science.6387911 11。Groman NB。 通过corynephages及其在白喉自然历史中的作用。 J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。Groman NB。通过corynephages及其在白喉自然历史中的作用。J HYG(Lond)。 1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。J HYG(Lond)。1984; 93:405–417。 12。 Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。 肉毒杆菌C1神经毒素的核苷酸序列。 核酸res。 1990; 18:4924。1984; 93:405–417。12。Hauser D,Eklund MW,Kurazono H,Binz T,Niemann H,Gill DM等。肉毒杆菌C1神经毒素的核苷酸序列。核酸res。1990; 18:4924。
1。Frangoul,H。等。exagamglogene自动赛,用于严重的镰状细胞疾病。n Engl J Med 390,1649–1662(2024)。2。忘记,B。G。胎儿血红蛋白的遗传持久性的分子基础。ann。N. Y. Acad。 SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。N. Y. Acad。SCI。 850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。SCI。850,38–44(1998)。 3。 Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。850,38–44(1998)。3。Wienert,B。等。 KLF1在英国HPFH中驱动胎儿血红蛋白的表达。 血液130,803–807(2017)。 4。 Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。KLF1在英国HPFH中驱动胎儿血红蛋白的表达。血液130,803–807(2017)。4。Wienert,B。等。 编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。 NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。Wienert,B。等。编辑基因组,以引入与胎儿球蛋白增加有关的有益天然发生的突变。NAT COMUM 6,7085(2015)。 5。 Martyn,G。E.等。 近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。 血液133,852–856(2019)。 6。 Martyn,G。E.等。 自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。 nat Genet 50,498–503(2018)。 7。 Frati,G。等。 CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。 mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。 8。 Anzalone,A。V。等。 搜索和重新固定基因组编辑,无需双链断裂或供体DNA。 自然576,149–157(2019)。 9。 Coleman,M。B.等。 am。 J. Hematol。 42,186–190(1993)。 10。 Chen,P。J.等。NAT COMUM 6,7085(2015)。5。Martyn,G。E.等。近端启动子中的自然调节突变通过创建从头GATA1部位来提高胎儿球蛋白表达。血液133,852–856(2019)。6。Martyn,G。E.等。自然调节突变通过破坏BCL11A或ZBTB7A结合来提升胎儿球蛋白基因。nat Genet 50,498–503(2018)。7。Frati,G。等。CRISPR-CAS9治疗镰状细胞病的安全性和功效研究突出了特异性疾病的反应。mol ther s1525-0016(24)00470–2(2024)doi:10.1016/j.ymthe.2024.07.015。8。Anzalone,A。V。等。搜索和重新固定基因组编辑,无需双链断裂或供体DNA。自然576,149–157(2019)。9。Coleman,M。B.等。am。J. Hematol。42,186–190(1993)。 10。 Chen,P。J.等。42,186–190(1993)。10。Chen,P。J.等。Chen,P。J.等。g伽玛A伽马(β+)胎儿血红蛋白的遗传持久性:g伽玛-158 c-> t在顺式中与-175 t-> c c gamma-lobin基因的突变会导致G Gama-- gamma基因的增加导致G Gama-Globobin的增加。通过操纵细胞决定因素的编辑结果来增强质量编辑系统。Cell 184,5635-5652.E29(2021)。 11。 Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Cell 184,5635-5652.E29(2021)。11。Ravi,N。S.等。 通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。 Elife 11,E65421(2022)。 12。 Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Ravi,N。S.等。通过CRISPR基础编辑来识别新型HPFH样突变,从而提高了胎儿血红蛋白的表达。Elife 11,E65421(2022)。12。Kim,H。K.等。 预测人类细胞中主要编辑指南RNA的效率。 nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。 13。 Nelson,J。W.等。 设计的Pegrnas提高了主要的编辑效率。 NAT生物技术40,402–410(2022)。 14。 Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Kim,H。K.等。预测人类细胞中主要编辑指南RNA的效率。nat Biotechnol(2020)doi:10.1038/s41587-020-0677-y。13。Nelson,J。W.等。设计的Pegrnas提高了主要的编辑效率。NAT生物技术40,402–410(2022)。14。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。 核酸Res 50,1187–1197(2022)。 15。 Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Habib,O.,Habib,G.,Hwang,G.-H。 &Bae,S。人类胚胎干细胞中主要编辑结果的全面分析。核酸Res 50,1187–1197(2022)。15。Lee,J。等。 prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。 nat Commun 14,1786(2023)。 16。 Antoniou,P。等。 基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。 nat Commun 13,6618(2022)。 17。 Pavani,G。等。 通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。 血液Adv 5,1137–1153(2021)。 18。Lee,J。等。prime用真正的cas9 nickases编辑最大程度地减少了不需要的indels。nat Commun 14,1786(2023)。16。Antoniou,P。等。基础编辑介导的γ-球蛋白顺式调节元件的解剖,用于胎儿血红蛋白表达的治疗重新激活。nat Commun 13,6618(2022)。17。Pavani,G。等。通过人类造血干细胞中α-珠蛋白基因座的CRISPR/CAS9编辑对β-丘脑的抗性。血液Adv 5,1137–1153(2021)。18。Everette,K。A.等。在体内造血干细胞的体内质量编辑促进小鼠植入后镰状细胞疾病表型。nat Biomed Eng 7,616–628(2023)。19。Peterka,M。等。利用DSB修复以促进有效的同源性依赖性和 - 独立的质量编辑。nat Commun 13,1240(2022)。20。Magnani,A。等。对镰状细胞疾病的同种异体移植后混合嵌合体患者进行了广泛的多系数分析:对基因治疗的造血和植入阈值的见解。Haematologica 105,1240–1247(2020)。21。Sun,Y。等。 在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Sun,Y。等。在小鼠中耐用基因校正的肺部干细胞的体内编辑。 科学384,1196–1202(2024)。 22。 Doman,J。L.等。 噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。 单元格186,3983-4002.E26(2023)。 23。 Wimberger,S。等。 同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。 nat Commun 14,4761(2023)。 24。 Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。在小鼠中耐用基因校正的肺部干细胞的体内编辑。科学384,1196–1202(2024)。22。Doman,J。L.等。噬菌体辅助进化和蛋白质工程产生紧凑,有效的主要编辑者。单元格186,3983-4002.E26(2023)。23。Wimberger,S。等。同时抑制DNA-PK和POLθ提高了基因组编辑的整合效率和精度。nat Commun 14,4761(2023)。24。Yan,J。等。 用内源性的小RNA结合蛋白改善原始编辑。 自然628,639–647(2024)。 25。 Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。 nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。 26。 核酸res。Yan,J。等。用内源性的小RNA结合蛋白改善原始编辑。自然628,639–647(2024)。25。Levesque,S.,Cosentino,A.,Verma,A.,Genovese,P。&Bauer,D。E.通过调节核苷酸代谢,增强造血干和祖细胞中的质量编辑。nat Biotechnol(2024)doi:10.1038/s41587-024-02266-4。26。核酸res。Brinkman,E。K.,Chen,T.,Amendola,M。&Van Steensel,B。通过序列痕量分解对基因组编辑的易于定量评估。42,E168(2014)。 27。 Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和42,E168(2014)。27。Brusson,M。等。 新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。 mol the核酸32,229–246(2023)。 28。 Gaudelli,N。M.等。 腺嘌呤基础编辑者的定向演变,活动增加和Brusson,M。等。新型的慢病毒载体,用于结合基因添加和基因沉默策略的镰状细胞疾病基因治疗。mol the核酸32,229–246(2023)。28。Gaudelli,N。M.等。腺嘌呤基础编辑者的定向演变,活动增加和
Gene Yeo PhD MBA 是加州大学圣地亚哥分校 (UCSD) 细胞和分子医学教授,基因组医学研究所的创始成员,也是 UCSD 干细胞项目和 Moores 癌症中心的成员。Yeo 博士拥有伊利诺伊大学香槟分校化学工程学士学位和经济学学士学位,麻省理工学院计算神经科学博士学位以及 UCSD Rady 管理学院工商管理硕士学位。Yeo 博士是一位计算和实验科学家,为 RNA 生物学和治疗学做出了贡献。他的主要研究兴趣是了解 RNA 加工的重要性以及 RNA 结合蛋白 (RBP) 在发育和疾病中的作用。自成立以来,Yeo 博士的实验室一直致力于揭示 RBPs 影响基因表达的分子原理、RBP 介导的转录后基因网络如何促进干细胞和大脑的细胞稳态,以及 RBPs 突变如何导致人类发育和神经退行性疾病。他的实验室率先在人类疾病相关系统中采用计算算法和实验方法,以进行系统和大规模研究。这些多学科方法结合了机器学习、生物化学、分子生物学、基因组学、化学和材料研究。他的实验室开发了系统、稳健且可采用的方法,例如用于大规模绘制蛋白质-RNA 相互作用的增强型 CLIP(Van Nostrand 等人,Nature Methods,2016 年)。 Gene 实验室是研究 RBPs 的主要资源贡献者,这些资源使生物科学许多领域的数百个实验室能够利用这些资源,例如世界上最大的 RBP 特异性抗体资源,这有助于生成和解释迄今为止最全面的数百种 RBP 的 RBP 结合位点图谱 (Van Nostrand 等人,Nature,2020)。他们还系统地发现了在应激过程中凝结成 RNA 颗粒的 RBPs,并展示了利用这些 RBPs 治疗神经退行性疾病的策略 (Markmiller 等人,Cell,2018;Fang 等人,Neuron,2019;Wheeler 等人,Nature Methods,2020)。他的实验室还展示了使用 CRISPR/Cas 蛋白的体内 RNA 靶向 (Nelles 等人,Cell,2016),并在重复扩增障碍中进行了概念验证 (Batra 等人,Cell,2017;Batra 等人,Nature Biomedical Engineering,2020)。 Yeo 实验室的研究成果被《自然方法》和《自然评论遗传学》列为“值得关注的方法”,并于 2016 年被《发现》杂志列为头条新闻。这些努力已促成了开发 RNA 相关疾病药物的临床项目。Yeo 博士撰写了 200 多篇同行评议出版物,包括神经退行性疾病、RNA 处理、计算生物学和干细胞模型领域的特邀书籍章节和评论文章;并担任两本关于 RNA 结合蛋白生物学的书籍的编辑。Gene 是《Cell Reports》、《Cell Research》和《eLife》杂志的编辑委员会成员,也是 Review commons 的顾问委员会成员。 Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位 Crick-Jacobs 研究员(2005-2008 年),并因其在计算分子生物学方面的工作而获得了 Alfred P Sloan 奖学金(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy “大创意”奖获得者(2019 年)以及 2019 年跨领域高引用研究员奖获得者,表彰过去十年全球最具影响力的研究人员。 Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona 等生物技术公司的联合创始人。Gene 在 Locana 于 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。Gene 现任或曾任艾伦免疫学研究所、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。 Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是位于圣地亚哥的 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 的“重返工作岗位”工作组成员。Gene 是 DASL(多样性和科学讲座系列,2020 年)的教职员工创始人,为科学家提供讨论多样性、公平性和包容性挑战的发言权,并庆祝他们的科学成就。Gene 于 1999 年在军官学员学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他把时间都花在攀岩上。Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位 Crick-Jacobs 研究员(2005-2008 年),并因其在计算分子生物学方面的工作而获得了 Alfred P Sloan 奖学金(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy “大创意”奖获得者(2019 年)以及 2019 年跨领域高引用研究员奖获得者,表彰过去十年全球最具影响力的研究人员。 Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona 等生物技术公司的联合创始人。Gene 在 Locana 于 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。Gene 现任或曾任艾伦免疫学研究所、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。 Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是位于圣地亚哥的 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 的“重返工作岗位”工作组成员。Gene 是 DASL(多样性和科学讲座系列,2020 年)的教职员工创始人,为科学家提供讨论多样性、公平性和包容性挑战的发言权,并庆祝他们的科学成就。Gene 于 1999 年在军官学员学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他把时间都花在攀岩上。Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位 Crick-Jacobs 研究员(2005-2008 年),并因其在计算分子生物学方面的工作而获得了 Alfred P Sloan 奖学金(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy “大创意”奖获得者(2019 年)以及 2019 年跨领域高引用研究员奖获得者,表彰过去十年全球最具影响力的研究人员。 Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona 等生物技术公司的联合创始人。Gene 在 Locana 于 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。Gene 现任或曾任艾伦免疫学研究所、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。 Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是位于圣地亚哥的 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 的“重返工作岗位”工作组成员。Gene 是 DASL(多样性和科学讲座系列,2020 年)的教职员工创始人,为科学家提供讨论多样性、公平性和包容性挑战的发言权,并庆祝他们的科学成就。Gene 于 1999 年在军官学员学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他把时间都花在攀岩上。吉恩是索尔克研究所第一位克里克-雅各布斯研究员(2005-2008 年),并因其在计算分子生物学领域的工作获得了阿尔弗雷德·P·斯隆奖学金(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会首届早期职业奖(2017 年)、布拉瓦尼克国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy “大创意”奖获得者(2019 年)以及 2019 年跨领域高引用研究人员奖获得者,该奖项表彰了过去十年全球最具影响力的研究人员。 Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona 等生物技术公司的联合创始人。Gene 在 Locana 于 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。Gene 现任或曾任艾伦免疫学研究所、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。 Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是位于圣地亚哥的 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 的“重返工作岗位”工作组成员。Gene 是 DASL(多样性和科学讲座系列,2020 年)的教职员工创始人,为科学家提供讨论多样性、公平性和包容性挑战的发言权,并庆祝他们的科学成就。Gene 于 1999 年在军官学员学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他把时间都花在攀岩上。吉恩是索尔克研究所第一位克里克-雅各布斯研究员(2005-2008 年),并因其在计算分子生物学领域的工作获得了阿尔弗雷德·P·斯隆奖学金(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会首届早期职业奖(2017 年)、布拉瓦尼克国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy “大创意”奖获得者(2019 年)以及 2019 年跨领域高引用研究人员奖获得者,该奖项表彰了过去十年全球最具影响力的研究人员。 Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona 等生物技术公司的联合创始人。Gene 在 Locana 于 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。Gene 现任或曾任艾伦免疫学研究所、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。 Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是位于圣地亚哥的 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 的“重返工作岗位”工作组成员。Gene 是 DASL(多样性和科学讲座系列,2020 年)的教职员工创始人,为科学家提供讨论多样性、公平性和包容性挑战的发言权,并庆祝他们的科学成就。Gene 于 1999 年在军官学员学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他把时间都花在攀岩上。圣地亚哥 Xconomy 奖“大创意”奖 (2019) 获得者和 2019 年跨领域高被引研究人员奖获得者,该奖项旨在表彰过去十年中全球最具影响力的研究人员。Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是生物技术公司的联合创始人,包括 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona。Gene 在 Locana 的 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。 Gene 现任或曾任 Allen Institute of Immunology、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是圣地亚哥 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 复工工作组成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战的机会,并庆祝他们的科学成就。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他喜欢攀岩。圣地亚哥 Xconomy 奖“大创意”奖 (2019) 获得者和 2019 年跨领域高被引研究人员奖获得者,该奖项旨在表彰过去十年中全球最具影响力的研究人员。Gene 的研究得到了美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会和陈-扎克伯格倡议的资助。Gene 还获得了武田、基因泰克和罗氏等生物技术和制药公司的资助并与其合作。Gene 是生物技术公司的联合创始人,包括 Locana、Eclipse Bioinnovations、Enzerna 和 Proteona。Gene 在 Locana 的 A 轮融资 (2019) 中成功筹集 5500 万美元的过程中发挥了关键作用。 Gene 现任或曾任 Allen Institute of Immunology、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是圣地亚哥 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 复工工作组成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战的机会,并庆祝他们的科学成就。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他喜欢攀岩。Gene 现任或曾任 Allen Institute of Immunology、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是圣地亚哥 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 复工工作组成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战的机会,并庆祝他们的科学成就。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他喜欢攀岩。Gene 现任或曾任 Allen Institute of Immunology、Locana、Eclipse Bioinnovations、Proteona、Aquinnah、Cell Applications、Nugen (现为 Tecan)、Sardona Therapeutics 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 是 SCREEN(圣地亚哥 Covid-19 研究企业网络,2020 年)的创始人,也是圣地亚哥 SEARCH(圣地亚哥流行病学和 Covid 健康研究,2020 年)联盟的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区拓展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 Biocom 复工工作组成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战的机会,并庆祝他们的科学成就。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在他喜欢攀岩。
Gene Yeo PhD MBA 是加州大学圣地亚哥分校 (UCSD) 细胞和分子医学教授,基因组医学研究所的创始成员,也是 UCSD 干细胞项目和摩尔斯癌症中心的成员。Yeo 博士拥有伊利诺伊大学香槟分校化学工程学士学位和经济学学士学位,麻省理工学院计算神经科学博士学位以及 UCSD 拉迪管理学院 MBA 学位。Yeo 博士担任 UCSD 生物信息学和系统生物学研究生课程联合主任以及遗传学 T32 培训项目副主任。Yeo 博士是一位计算和实验科学家,为 RNA 生物学和治疗学做出了贡献。他的主要研究兴趣是了解 RNA 加工的重要性以及 RNA 结合蛋白 (RBP) 在发育和疾病中的作用。自成立以来,Yeo 博士的实验室一直致力于揭示 RBPs 影响基因表达的分子原理、RBP 介导的转录后基因网络如何促进干细胞和大脑的细胞稳态,以及 RBPs 突变如何导致人类发育和神经退行性疾病。他的实验室率先在人类疾病相关系统中采用计算算法和实验方法,以进行系统和大规模研究。这些多学科方法结合了机器学习、生物化学、分子生物学、基因组学、化学和材料研究。他的实验室开发了系统、稳健且可采用的方法,例如用于大规模绘制蛋白质-RNA 相互作用的增强型 CLIP(Van Nostrand 等人,Nature Methods,2016 年)。 Gene 实验室是研究 RBPs 的主要资源贡献者,这些资源使生物科学许多领域的数百个实验室能够利用这些资源,例如世界上最大的 RBP 特异性抗体资源,这有助于生成和解释迄今为止最全面的数百种 RBP 的 RBP 结合位点图谱 (Van Nostrand 等人,Nature,2020)。他们还系统地发现了在应激过程中凝结成 RNA 颗粒的 RBPs,并展示了利用这些 RBPs 治疗神经退行性疾病的策略 (Markmiller 等人,Cell,2018;Fang 等人,Neuron,2019;Wheeler 等人,Nature Methods,2020)。他的实验室还展示了使用 CRISPR/Cas 蛋白的体内 RNA 靶向 (Nelles 等人,Cell,2016),并在重复扩增障碍中进行了概念验证 (Batra 等人,Cell,2017;Batra 等人,Nature Biomedical Engineering,2020)。最近,他的实验室开发了 STAMP 技术(Brannan 等人,Nature Methods,2021),这是第一种在转录组范围内识别 RNA 结合蛋白位点和以单细胞分辨率进行翻译测量的方法。Yeo 实验室的工作被《Nature Methods》和《Nature Reviews Genetics》列为“值得关注的方法”,并被《Discover》杂志列为头条新闻。这些努力促成了开发 RNA 相关疾病药物的临床项目。Yeo 博士撰写了 180 多篇同行评议出版物,包括神经退行性疾病、RNA 处理、计算生物学和干细胞模型领域的特邀书籍章节和评论文章;并担任两本 RNA 结合蛋白生物学书籍的编辑。Gene 是 Cell Reports、Cell Research 和 eLife 杂志的编辑委员会成员,也是 Review commons 的顾问委员会成员。Gene 于 2008 年加入加州大学圣地亚哥分校担任助理教授,2014 年晋升为副教授,2016 年晋升为教授。Gene 是索尔克研究所第一位克里克-雅各布斯研究员 (2005-2008)。其他奖项包括阿尔弗雷德·P·斯隆奖学金(表彰他在计算分子生物学领域的工作)(2011 年)、Alpha Chi Sigma-Zeta Chapter Krug 讲师奖(2016 年)、新加坡国家研究基金会访问研究员奖(2017 年)、国际 RNA 学会颁发的首届早期职业奖(2017 年)、Blavatnik 国家奖决赛入围者(2018 年和 2019 年)、圣地亚哥 Xconomy 奖“大创意”获得者(2019 年)和跨领域类别的高被引研究员(2019 年和 2020 年),表彰过去十年全球最具影响力的研究人员。Gene 还是 Paul Allen 杰出研究员(2020 年),并获得了 RNA 学会颁发的 2021 年 Elisa Izaurralde 研究、教学和服务创新奖。 Gene 是 Locanabio、Eclipse Bioinnovations、Enzerna、Proteona、Trotana 和 Circ Bio 等生物技术公司的联合创始人。Gene 曾任或担任 Allen Institute of Immunology、Locanabio、Eclipse Bioinnovations、Proteona、CircBio、Aquinnah、Cell Applications、Tecan、LGC、Sardona Therapeutics、Ladder Therapeutics、Insitro、Trotana、Nooma 和 Ribometrix 的科学顾问委员会成员。Gene 是 Accelerator Life Sciences Partners 的高级顾问。Gene 的实验室目前或之前曾得到美国国立卫生研究院、美国国家科学基金会、加州再生医学研究所、TargetALS、ALS 基金会、国防部、肌强直性营养不良协会、肌强直性营养不良基金会、陈-扎克伯格倡议、武田、基因泰克和罗氏的支持。 Gene 是圣地亚哥新冠疫情研究企业网络 (SCREEN,2020 年) 的创始人,也是圣地亚哥新冠疫情流行病学和研究联盟 (SEARCH,2020 年) 的创始成员。SCREEN 在圣地亚哥拥有约 1000 名科学家成员,专注于基层研究协调和社区外展。SEARCH 专注于病毒流行情况的流行病学研究,完成了一项涉及 12000 人的病毒传播研究。Gene 是 EXCITE (快速新冠识别环境) 实验室的联合主任,该实验室在 UCSD 进行新冠高通量测试,并且是 UCSD 重返学习指导委员会的成员。Gene 是 Biocom 重返工作岗位工作组的成员。吉恩是 DASL(2020 年多样性与科学讲座系列)的创始人,该系列为科学家提供了一个讨论多样性、公平性和包容性挑战并庆祝他们的科学成就的机会。吉恩于 1999 年在军官学校获得荣誉之剑(最高荣誉),并曾在新加坡海军担任海军军官。吉恩已经完成了 2 次全程铁人三项赛和多次半程铁人三项赛、奥运会铁人三项赛、短距离铁人三项赛、全程马拉松和半程马拉松,但现在花时间进行攀岩。