▪目前通过降落测试的撞车道可供燃料电池和燃油箱进行调节。由于燃油箱的流行和飞机中电池系统的新颖性,Easa采用了这些燃油箱掉落测试要求,将电池系统用作起点。FAA也在追求这一道路,同时研究了更永久的方法。▪燃料系统的滴测试需要将50英尺的几乎填充的燃油系统置于一个不形成的表面上。在滴落后,监视燃油系统以泄漏或火灾。同样,电池系统应重新充电并从至少50英尺处掉落,然后监视气体或液体的泄漏以及火灾或爆炸。▪此测试程序和仿真研究将提供有关与FAA和行业相关的项目的信息:
•新型航空航天部门:任务和车辆(例如,自主货物交付)•高水平飞行自主权的商业案例(例如,船上飞行员,一对一对人的人类对自动驾驶汽车)•政府/行业/学术界正在制定新的运输系统•任何人,任何人,任何人,任何人的范围•任何人,范围•任何人的范围•任何人的范围)配置•具有非常具有挑战性的空气推进建模
2.21 在麦克风上方 150 英尺的高度(交替从北向南和从南向北飞行)以两种不同的飞行速度(“慢速”和“快速”)进行飞越测量,旨在代表麦克风上方的最小和最大功率操作。此外,多旋翼飞行器测试包括一系列模拟起飞和降落,高度为 150 英尺 14 英尺,以及在 4 英尺处进行悬停机动,其中包括四个基本罗盘方向(测量期间每个方向保持 30 秒)。作者还提供了俄克拉荷马州研究中收集的多旋翼飞行器噪音测量值与迄今为止进行的其他已知 UAS 噪音测试(包括 Cabell, R 等人报告的 NASA 飞越噪音水平研究)的“粗略比较”。
来源:EVTOL飞机的建筑绩效评估和预期规格。百合工程评估与管理估算。1 Gama,JADC,公司信息(空中客车,波音,庞巴迪,巴西航空工业人),2009年至2019年。2基于飞机当前发展状态的估计;最高速度基于百合工程评估,假设飞行为10,000英尺;范围是指物理范围(服务范围 +储量);营业范围为175公里。3百合的初级认证机构规定灾难性失败的可能性不得超过10 -9。管理估算。
- 目前通过降落测试的撞车道值针对燃料电池和燃油箱进行调节。由于燃油箱的流行和飞机中电池系统的新颖性,Easa采用了这些燃油箱掉落测试要求,将电池系统用作起点。FAA也在同时研究更永久的方法的同时,正在追求这一道路。- 燃油系统的滴测试需要将50英尺的几乎填充的燃料系统置于平坦的,不形成的表面上。在滴落后,监视燃油系统以泄漏或火灾。同样,电池系统应重新充电并从至少50英尺处掉落,然后监视气体或液体的泄漏以及火灾或爆炸。•此测试程序和仿真研究将提供有关与FAA和行业相关的项目的信息:
电动垂直起飞和降落(EVTOL)飞机部署的关键方面是所使用的电池的安全性和性能能力。安全要求的一个组成部分是需要储备能源,只有在紧急情况下才能使用。在文献中,已经观察到应限制电池能量储备区域的下限,以避免发生急剧下降电压下降的区域。在此,提出了一种定义下限的方法。这旨在延长飞机可以在登陆不再完成之前巡航的时间。一种新型的功率能力测试程序用于测量可以完成恒定功率脉冲的最低电荷(SOC)。这与在预定的SOC点执行脉冲的现有功率能力测试不同。提出的方法的目标是复制着陆条件,以了解低SOC的功率能力性能。对各种环境条件和用例进行了测试,包括温度和功率脉冲以及两组不同老化的细胞。对于定义的测试条件,日历老年细胞的最低SOC值范围为6%至14%,而循环老化细胞的范围为8%至27%SOC。该测试的结果是一个特征图,将温度,脉冲功率和脉冲持续时间与最低SOC相关联。特征图指示需要在需要执行降落之前允许电池的最低SOC值。将特征图的精度与从测试数据参数参数的电池等效电路模型进行了比较。根据一组先前未测量的实验条件对定义的方法进行了实验验证。总体而言,与测量值相比,特征图提供了良好的精度,而MAP和模型方法的平均最大绝对百分比误差最多为7.5%。此外,测试结果表明,如果将最坏情况的降落场景用作储备区的下限,则如果不考虑细胞降解,则可用的名义飞行的可用SOC范围将受到很大的影响。
根据 CAST/ICAO 通用分类小组 (CICTT) 航空事故类别划分的死亡人数 致命事故 –全球商用喷气式飞机机队 –2001 年至 2010 年
摘要:电垂直起飞和着陆(EVTOL)飞机代表了一种关键的航空技术,以改变未来的运输系统。EVTOL飞机的独特特征包括降低噪声,低污染物的发射,有效的操作成本和灵活的可操作性,同时,这对先进的电力保留技术构成了关键的挑战。因此,由于EVTOL起飞过程中的巨大功率需求,最佳起飞轨迹设计至关重要。传统的设计优化,但是,以迭代方式采用高保真模拟模型,从而产生了计算密集型机制。在这项工作中,我们实施了一个支持替代物的倒数映射优化体系结构,即直接预测设计要求(包括飞行条件和设计约束)的最佳设计。经过训练的逆映射替代物执行实时最佳EVTOL起飞轨迹预测,而无需运行优化;但是,一个培训样本需要在此反映射设置中进行一个设计优化。反向映射的过度训练成本和最佳EVTOL起飞轨迹的特征需要开发回归生成的对抗网络(Reggan)代理。我们建议通过转移学习(TL)技术进一步增强Reggan的预测性能,从而创建一种称为Reggan-TL的方案。在这项工作中,发电机采用设计要求作为输入并产生最佳的起飞轨迹配置文件,而歧视器则在培训集中区分了生成的配置文件和真正的最佳配置文件。尤其是,提议的核根方案利用了由发电机网络和鉴别器网络组成的生成对抗网络(GAN)架构,并具有均一平方误差(MSE)和二进制跨透镜(BC)的组合损失,用于回归任务。综合损失有助于双重方面的发电机培训:MSE损失目标是生成的概况和培训对应物之间的最小差异,而BC损失则驱动了生成的配置文件,以与训练集共享类似模式。我们证明了Reggan-TL在空中客车A 3 Vahana的最佳起飞轨迹设计上的实用性,并将其与代表性替代物的性能进行了比较,包括多输出高斯工艺,条件gan和Vanilla Reggan。结果表明,Reggan-TL仅使用200个训练样本,而最佳参考替代物需要400个样本,达到了99.5%的概括精度阈值。培训费用减少了50%,降低了Reggan-TL实现的概括准确性的标准偏差,证实了其出色的预测性能和广泛的工程应用潜力。
摘要:高功率是锂离子电池的关键要求,旨在满足先进的空气移动性的负载轮廓。在这里,我们模拟了由锂离子电池供电的电动垂直起飞和降落(EVTOL)车辆的初始起飞步骤,该车辆在放电周期开始时遭受了强烈的15 c排放脉冲,然后进行后续的低率放电。我们进行了广泛的电化学测试,以评估在这些高应变条件下锂离子电池的长期稳定性。主要发现是,尽管在低速率下观察到的性能恢复,但高率的重新置换会导致剧烈的细胞衰竭。虽然结果强调了EVTOL电池的寿命挑战,但这些发现还强调了对EVTOL应用量身定制的电池化学设计的需求,以解决阳极电镀和阴极不稳定性。此外,EVTOL服务完成后,创新的第二使用策略将是至关重要的。
电动垂直起飞和着陆(EVTOL)飞机预计将在未来的城市空气流动(UAM)景观中变得无处不在。使用锂离子电池推动的几架EVTOL飞机在开发下。,尽管早期聚焦,但制造商仍需要确保车辆的长期安全操作,包括严格检查与电池相关的危害。另一方面,EVTOL电池的快速充电对于每天实现多次航班并证明UAM的经济性是合理的。这项工作旨在通过修改电池故障诊断算法以进行快速充电,旨在使EVTOL电池安全性。该算法是在本文的第1部分和第2部分中开发的,用于使用充电周期数据检测断开故障,但仅针对低充电电流进行了测试。本文通过称为部分增量容量(PIC)的新技术来适应该算法,以快速充电。PIC方法是在将其集成到算法中之前使用单细胞和超级细胞水平的实验开发的。最后,使用现实生活中的EVTOL电池模块验证了适应算法的故障检测能力。因此,Al Gorithm的更新版本可在快速充电时促进故障诊断,使其非常适合在EVTOL中实施。