预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2022 年 10 月 21 日发布。;https://doi.org/10.1101/2022.10.20.513037 doi:bioRxiv 预印本
• 脱氨酶的定向进化 • PAM 变体碱基编辑器 • 定向进化 Cas9 以创建用于 BE 的非 NGG PAM 变体 • 密码子、NLS 和接头优化 • 环状置换体和镶嵌碱基编辑器 • DNA 脱靶评估 • RNA 脱靶评估 • 旁观者编辑最小化 • 引导 RNA 工程 • 离体和体内 BE 递送 • 最小化脱靶活性的工程 BE • HSC、肝细胞和 T 细胞的离体碱基编辑 • ABE 的低温电子显微镜结构 • 小鼠体内碱基编辑 • 非人类灵长类动物体内编辑
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 2 月 10 日发布。;https://doi.org/10.1101/2022.02.09.479813 doi:bioRxiv preprint
摘要背景:利用最近开发的 tRNA 腺苷脱氨酶 (TadA8e 和 TadA9) 改造的高活性腺嘌呤碱基编辑器 (ABE) 表现出强大的碱基编辑活性,但引发了人们对脱靶效应的担忧。结果:在本研究中,我们对 ABE8e 和 ABE9 诱导的水稻 DNA 和 RNA 突变进行了全面评估。对用四种 ABE(包括 SpCas9n-TadA8e、SpCas9n-TadA9、SpCas9n-NG-TadA8e 和 SpCas9n-NG-TadA9)转化的植物进行全基因组测序分析表明,含有 TadA9 的 ABE 导致更多数量的脱靶 A 到 G (A>G) 单核苷酸变体 (SNV),而含有 CRISPR/SpCas9n-NG 的 ABE 导致水稻基因组中脱靶 SNV 总数更高。对携带 ABE 的 T-DNA 的分析表明,在 T-DNA 整合到植物基因组之前和/或之后可以引入靶向突变,在 ABE 整合到基因组之后会形成更多的脱靶 A>G SNV。此外,我们在 ABE 表达高的植物中检测到脱靶 A>G RNA 突变,但在 ABE 表达低的植物中未检测到。脱靶 A>G RNA 突变倾向于聚集,而脱靶 A>G DNA 突变很少聚集。结论:我们的研究结果表明 Cas 蛋白、TadA 变体、ABE 的时间表达和 ABE 的表达水平对水稻中的 ABE 特异性有影响,这为了解 ABE 的特异性提供了见解,并提出了除改造 TadA 变体之外增加 ABE 特异性的其他方法。
细胞生物学国家重点实验室、上海分子男科学重点实验室、中国科学院上海生物化学与细胞生物学研究所、分子细胞科学卓越创新中心
碱基编辑器是专门设计的脱氨酶,能够以精确有效的方式定向转换基因组或转录组中的特定碱基,并有望纠正致病突变。限制这种强大方法应用的一个主要问题是脱靶编辑问题。最近的几项研究表明碱基编辑器会诱导大量脱靶 RNA 活性,并证明脱靶突变可能会被改进的脱氨酶版本或优化的向导 RNA 抑制。在这里,我们描述了一类新的脱靶事件,这些事件对于现有的检测基因组变异的方法来说是不可见的,因此迄今为止一直被忽视。我们表明,非特异性、看似随机的脱靶事件会影响整个基因组或转录组中的大量位点,并占脱靶活动的大多数。我们开发并采用一种对随机脱靶活动敏感的不同互补方法,并使用它来量化由于当前优化的脱氨酶编辑器而导致的大量脱靶 RNA 突变。我们提供了一种计算工具来量化全局脱靶活动,可用于优化未来的碱基编辑器。工程碱基编辑器能够以单碱基分辨率定向操纵基因组或转录组。我们相信,实施这种计算方法将有助于设计更具体的碱基编辑器。
摘要Prime Editor(PES)是定期间隔的短篇小说重复序列(CRISPR)基于基于基于)的基因组工程工具,可以引入精确的基本配置编辑。我们开发了一条自动管道,以纠正(治疗性编辑)或引入(疾病建模)人类的致病变异,该变异能够阐明主要编辑所需的几种RNA构建体的设计,并避免了人类基因组中预测的非目标。但是,使用最佳的PE设计标准,我们发现只有一小部分这些致病性变体才能得到焦油。通过使用替代CAS9酶和扩展模板,我们将可靶向的病原变体的数量从32,000增加到56,000个变体,并使这些预先设计的PE构建体可通过基于Web的门户(http://primeedit.nygenome.org)访问。鉴于具有治疗基因编辑的巨大潜力,我们还评估了开发通用PE构建体的可能性,发现常见遗传变异仅影响少数少数设计的PE。
1。Beam Therapeutics,美国马萨诸塞州剑桥2。 里昂癌症研究中心,Inserm,U1052,法国里昂3。 Hospices Civils de Lyon(HCL),法国里昂。 4。 里昂大学,UMR_S1052,UCBL,69008里昂,法国。 5。 法国大学(IUF)Institut Universitaire Universitaire Universitaire,法国75005。Beam Therapeutics,美国马萨诸塞州剑桥2。里昂癌症研究中心,Inserm,U1052,法国里昂3。Hospices Civils de Lyon(HCL),法国里昂。4。里昂大学,UMR_S1052,UCBL,69008里昂,法国。5。法国大学(IUF)Institut Universitaire Universitaire Universitaire,法国75005。
腺苷到肌苷 (A-to-I) 编辑是一种 RNA 转录后修饰,可改变其序列、编码潜力和二级结构。在作用于 RNA 的腺苷脱氨酶 (ADAR) 蛋白 ADAR1 和 ADAR2 的催化下,A-to-I 编辑发生在小鼠的约 50 000 – 150 000 个位点上,而人类的位点则达到数百万个。绝大多数 A-to-I 编辑发生在重复元素中,这解释了物种间位点总数的差异。ADAR1 在哺乳动物中编辑的主要物种保守作用是抑制未编辑的细胞来源的内源性 RNA 引起的先天免疫激活。在没有编辑的情况下,反向配对序列(例如 Alu 元素)被认为会形成稳定的双链 RNA (dsRNA) 结构,从而触发 dsRNA 传感器(例如 MDA5)的激活。一小部分编辑位点位于编码序列内,并且在后生动物中进化保守。已证明 ADAR2 编辑对于大脑神经递质受体的重新编码具有生理重要性。此外,RNA 编辑的变化与各种病理状态有关,从严重的自身免疫性疾病 Aicardi-Goutières 综合征到各种神经发育和精神疾病以及癌症。但是,检测到编辑位点是否意味着功能重要性?人类和转基因小鼠模型中的遗传学研究以及进化基因组学已开始阐明 A-to-I 编辑在体内的作用。此外,最近的发展表明在癌症等病理条件下编辑可能具有不同的功能。
1. 纽约基因组中心,纽约州纽约市,美国。2. 纽约大学生物学系,纽约州纽约市,美国。† 这些作者贡献相同。 * 电子邮件:neville@sanjanalab.org 关键词:Prime 编辑、CRISPR、致病变异、ClinVar、人类遗传变异