摘要:盐水环境经常在冷却和注入系统中发现。当钢暴露于类似的环境时,它会得到点腐蚀。为了防止这种现象,使用腐蚀抑制剂很重要。这项工作评估了羟基磷灰石作为钢的潜在腐蚀抑制剂的功效。这是该化合物在盐水环境中作为抑制剂的第一个应用。使用X射线衍射,傅立叶变换红外光谱,化学分析和SEM/EDX研究了合成的产品,以表征其性质和形态。通过电化学技术,包括固定极化曲线(PDP),开路电位(OCP)和电化学阻抗光谱(EIS),HAP在NaCl中的抑制效率是3%培养基。合成的产品是羟基磷灰石,CA/P比为1.67。电化学研究表明,HAP能够预防3%NaCl的腐蚀,当抑制剂浓度为100 ppm时,抑制效率超过91%。另外,抑制剂的类型主要与阴极混合。HAP分子的吸附与Langmuir的吸附等温线一致。另外,金属表面的SEM/EDX分析表明,在界面钢/NaCl上形成屏障膜,该膜由HAP的主要元素组成。理论方面是通过密度功能理论(DFT)和分子动力学(MD)模拟进行的。理论方法的结果(DFT和MD模拟)通过显示合成材料的抑制效率的类似趋势来证实所有实验结果,并表明HAP可以在3%NaCl中充当出色的钢抑制剂。
所有这些数据都存储在 ENVI-met 大气文件 _AT_ 中,在上面显示的屏幕部分中,您可以将 BioMet 的内部数据与输出文件结构链接起来。一旦您成功找到包含有效模拟输出文件的文件夹(参见步骤 1),BioMet 应该会自动填充上面给出的所有关系。理论上,BioMet 知道自版本 2 以来生成的任何 ENVI-met _AT_ 文件的输出格式。但是,可能总是会出现问题,或者您想使用自己的 .EDI/.EDT 或 .EDX/.EDT 文件来运行 BioMet。在这些情况下,您需要手动链接变量。
电池是日常生活中必不可少的组成部分,也是诊断和监测系统中现代医疗设备的关键组成部分或电气手术仪器中的重要组成部分。我们专注于可充电的Ni-MH电池,因为它们的容量是NICD电池的两到三倍,高能密度,但低于锂离子电池。手动拆卸医疗设备的NIMH电池,分开以识别组件并表征每种材料。使用特定的分析方法(XRF,SEI,EDX,XRD),该方法将允许找到有用元素的最佳技术。
.text:00000000004066D0 default_bzalloc proc near .text:00000000004066D0 var_18 = qword ptr -18h .text:00000000004066D0 var_10 = dword ptr -10h .text:00000000004066D0 var_C = dword ptr -0Ch .TEXT:000000004066D0 var_8 = qWord ptr -8 ... .Text:00000000004066D8 MOV [RBP+VAR_8],RDI .TEXT:0000000040666DC MOV .TEXT:000000004066E2 MOV EAX,[RBP+VAR_C] .TEXT:000000000040666E5 IMUL EAX,[RBP+VAR_10] .TEXT:000000000040666E9 MOVSXD RDI,EAX;尺寸.TEXT:00000000004066EC致电_malloc .Text:00000000404066F1 MOV [RBP+VAR_18],RAX .TEXT:00000000004066F5 MOV RAX RAX RAX,[RBP+VAR_18] ...
图 29 (a) 每个 I/O 电阻测量的开尔文结构;(b) 键合铜柱的 SEM 横截面 ......................................................................................................... 44 图 30 带 Ru 封盖的 Cu-Cu 键合测试台 ............................................................................. 45 图 31 铜上钌的沉积过程 ............................................................................................. 45 图 32 30 分钟 FGA(合成气体退火)退火后表面 Cu 和 Ru 的百分比 [98] ............................................................................................................. 46 图 33 450°C FGA 退火后,带有针孔的 Ru 表面上的扩散 Cu ............................................................................. 47 图 34 用于研究填充的测试台制造流程 ......................................................................................... 49 (b) 使用 Keyence 7000 显微镜对集成结构进行的顶视图,描绘了顶部芯片上的通孔密度 ............................................................................................................................. 50 图 36 (a) 200 次循环氧化铝 ALD 后扫描 EDX 映射区域的 SEM 图像;(b) 集成结构的顶视图,突出显示了填充覆盖研究区域;(c) EDX 映射结果描绘了铝和氧 pe 的区域 ............................................................................................................................. 51 图 37 200 次循环氧化铝 ALD 后脱粘底部芯片的 FIB 横截面描绘 ............................................................................................................................. 52 图 38 (a) 200 次循环真空清除 ALD 后 EDX 研究的不同区域 - 底部芯片正下方通孔区域(区域 A)、距最近通孔 300 µm 的区域(区域 B)、靠近边缘的区域(区域 C); (b) 三个 r 中的 Al/Si 比率 ...................................................................................................................................... 52 图 39 (a) 集成结构的对角线切割;(b) 描绘平滑填充区域和无填充的受损区域后集成结构横截面的近视图;(c) 描绘填充高达 300 µm 的横截面的未放大图像 ............................................................................................. 54 图 40 (a) ZIF-8 MOF 化学和结构;(b) 示意图表示 ALD ZnO 和转化为气相沉积 MOF,体积膨胀和间隙填充约为 10-15 倍。 ........................................................................................................................................... 56 图 41 在完全填充芯片到基板间隙后,距离最近通孔 300 µm 的集成结构横截面的 EDX 映射.............................................................................57 图 42 横截面的 SEM 图像显示抛光模具未渗透到通孔和芯片与基板的间隙中,从而使上述结果可信 ............................................................................................. 58 图 43 (a) 测试台示意图,顶部芯片具有通孔 Cu-Cu 键合到底部基板;(b) Cu-Cu 键合测试结构的 SEM 横截面(面 A);(c) 键合前顶部芯片表面的铜垫/柱(面 B);(d) 键合前底部芯片表面的带有金属走线的铜柱(面 C) ............................................................................................................................. 59 图 44 20 nm ZnO ALD 后脱键合的底部芯片概览;(b) 通孔下方未沉积填充的区域 ............................................................................................................. 60 图 45 顶部芯片靠近通孔的区域,显示扩散半径为 (a) 572 µm,通孔直径为 240 µm; (b) 75 µm 直径通孔的 364 µm .............................................................. 61 图 46 20 nm ZnO ALD 后的脱粘底部芯片概览,a) 脉冲时间 250 ms 和温度 150°C;(b) 脉冲时间 1 秒和温度 150°C ................................................................................ 62 图 47 反向混合键合的工艺顺序 ............................................................................................. 63 图 48 (a) 1 个 MOF 循环后脱粘底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表明已完全渗透............................................................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样,显示了 500 nm MOF ............................................................................................................................................. 65 图 50 (a) 5 个 MOF 填充循环后脱粘底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)
摘要 :由于相关优势,合成氧化钴纳米粒子 (Co3O4-NPs) 的绿色技术如今比其他方法更受青睐。本研究中的 Co3O4-NPs 是利用菠萝废皮和氯化钴 (Ⅱ) 作为钴源生成的。使用傅里叶变换光谱 (FTIR)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、紫外分光光度计等几种方法对生成的 NPs 进行分析。已确定生成的 Co3O4-NPs 对抗革兰氏阳性菌具有抗菌性能,并通过琼脂孔扩散法发现其对枯草芽孢杆菌 (B.subtilis) 具有活性。这种新创建的绿色合成技术对环境无害,可以取代 Co NPs 的物理和化学过程。
摘要:用湿过程将粗菜蛋糕用作制备基于蛋白质的生物塑性薄膜的起始材料。农业废物在40℃下实现的甲酸的简单暴露15分钟,可以有助于浆液,可以通过在没有其他增塑剂添加的情况下铸造出来生产可靠的生物塑料胶片。确定最佳过程条件后,所有薄膜和膜均通过DSC和FT-IR光谱依次表征。还测试了他们的吸水能力,拉伸强度和休息性能时的伸长率。通过Fe-Sem/EDX确定产物的各自的表面形态和基本组成。通过将氧化石墨烯加载到生物聚合物三维基质中来进行一些改善其内在特性的尝试。
在 SEM 过程中,样品会发射出特征 X 射线。我们可以使用能量色散 X 射线光谱仪 (EDS 或 EDX) 来检测特征 X 射线,以进一步表征元素成分。当主束电子撞击内壳电子时,会产生一个空隙,来自原子较高壳层的电子会落下以填补空隙。这种电子落下会释放原子以 X 射线形式发射的能量。特征 X 射线的能量模式取决于原子中电子壳层之间的能级差异,而每种原子的能级差异都是独一无二的。该信号可以从材料深处逸出,从而可以对 100 纳米到微米深度之间的成分进行调查。
研究二氧化碳 (CO 2 ) 在改善建筑材料性能和性能方面的潜力。 研究粉煤灰基土聚物作为混凝土修复材料和钢筋混凝土结构的化学、物理和机械性能。 使用 SEM/EDX 映射元素、X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 技术对 OPC 和土聚物修复材料之间界面过渡区的元素分布进行成像。 评估粉煤灰基土聚物修复材料在现场应用中的性能和耐久性。 使用普通波特兰水泥 (OPC) 和土聚物粘合剂的钢筋混凝土结构设计之间的比较。 产品开发:1. 用于混凝土裂缝和剥落修复的土工碱活化溶液 (GAAS)。 2. 使用纳米技术废物进行有效的土聚物-土壤稳定化以供公用事业使用
这项调查是在塔拉科塔(Terracotta)戒指中采集的陶土样品,预计将在铁器时期建造,在印度泰米尔纳德邦(Tamil Nadu)的Pattaraiperumbubudur发掘。借助EDX,XRD和TG-DTA检验,使用FE-SEM检查样品,以找到样品的矿物组成,形态和生产技术。来自XRD结果很明显,样品中石英和长石的百分比较高。使用FE-SEM测试,在氧化气氛下发现点火温度在600-900°C之间。使用吸水和孔隙率测试研究了样品的物理特性,该测试对样品的多孔结构较少,从而想出了较低的燃烧温度。通过TG-DTA测试估计制造时的射击温度为600-900°C,它也与FE-SEM和孔隙率一致。