Over the course of 1 week, I learn 12 analytical devices (Transmission Electron Microscopy, UV-Visible Spectroscopy, Water Testing (pH, Turbidity & Total Suspended Solid), Gas Chromatography Mass Spectroscopy, NMR, High Performance Liquid Chromatography, Thermal Gravimetry Analyzer/Differential Scanning Calorimetry, Scanning Electron Microscopy & Field Emission Scanning Electron Microscopy/EDX, Fourier在大学技术中心分析实验室中,转化红外光谱,X射线衍射仪,表面积和孔隙分析仪。我的主管是Hashila夫人,她指导我通过该设施的所有机器,并向所有技术人员进行了介绍。在这里我在中央分析实验室中概述了我在整个期间取得的三个主要结果:
导电聚合物因其可用于设计微电子局部电活性图案而备受关注。在这项工作中,我们利用聚吡咯的特性,结合双极电化学引发的无线极化,产生局部电阻梯度图案。物理化学改性是由聚吡咯的还原和过氧化引起的,这会在预定位置的导电基板的不同位置产生高电阻区域。由于聚吡咯具有出色的柔韧性,可以形成 U 形、S 形和 E 形双极电极用于概念验证实验,并进行电化学改性以产生明确的电阻梯度。样品的 EDX 分析证实了局部物理化学改性。与更传统的图案化方法相比,这种方法的主要优势是双极电化学的无线特性以及可能对电化学改性的空间分布进行微调。
摘要。本文分析了使用直接金属激光烧结 (DMLS)(称为“烧结”)和精密铸造技术生产的 Inconel 718 镍高温合金样品。理论部分侧重于通过现代增材制造方法(用于加工金属材料的方法)和传统精密铸造技术生产镍高温合金样品的特性。实践部分涉及对测试样品的机械性能和表面纹理的研究。本研究的很大一部分致力于使用电子显微镜方法分析断裂表面和 TEM 薄片的 EDX 实验测试。本文的结论包括对测试样品应用的两种技术的讨论、评估和解释。最后,讨论了在涡轮增压器耐热部件的设计和生产中使用现代增材制造技术的主要好处。
在我们的研究中,有机衍生物被用作环保绿色抑制剂,以防止HNO 3 1 m中的Cu溶解。这项研究是使用化学方法(例如质量损失方法(ML),电型动力极化(PP)和阻抗(EIS)技术进行的。从这些方法中获得的结果表明,随着这些物质浓度的增加,抑制效率(%IE)提高并达到95.1%。这些衍生物在铜(CU)表面上的吸附用于解释抑制作用。根据极化曲线,抑制剂是混合的。发现这些衍生物遵循Langmuir的吸附等温线。已使用了几种表面检查方法(扫描电子显微镜(SEM),EDX和傅立叶变换红外光谱法(FT-IR)。发现所有这些使用的方法彼此一致。关键字:CU,HNO 3,1,2,4-三唑衍生物,SEM,FTIR。
单元I对半导体的简介,固体中的能带,有效质量的概念,状态的密度,费米水平。pn连接,二极管方程和二极管等效电路,二极管中的故障,齐纳二极管,隧道二极管,金属半导体连接 - 欧米克和肖特基触点,JFET的特征和同等电路,MOSFET,MOSFET。低维半导体设备 - 量子井,量子线,量子点。高电子迁移式晶体管(HEMT),太阳能电池 - I-V特征,填充因子和效率,LED,LCD和柔性显示器。未来设备的新兴材料:石墨烯,碳纳米管(CNT),ZnO,SIC等。单元-II IC制造 - 晶体生长,外延,氧化,光刻,掺杂,蚀刻,隔离方法,隔离方法,金属化,粘合,薄膜沉积和表征技术:XRD,TEM,SEM,EDX,EDX,薄膜,薄膜和无源设备,MOS技术和Mos设备和莫斯设备和莫斯式的NMOS和CMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS和CMOS的缩放,NMOS和CMOS和CMOS,NMOS和CMOS,NMOS和CMOS,NMOS和CMOS,NMOS和CMOS缩放,CMOS和CMOS,NMOS和CMOS缩放,CMOS和CMOS和CMOS的缩放电压,NMOS和CMOS逆变器,电荷耦合设备(CCD) - 结构,电荷存储和传输,VLSI设计的基础,贴纸图,布局设计规则。单元III叠加,Thevenin,Norton和最大功率传递定理,网络元素,网络图,节点和网格分析。拉普拉斯变换,傅立叶变换和Z变换。时间和频域响应,被动过滤器,两个端口网络参数:Z,Y,ABCD和H参数,传输函数,信号表示,状态可变的电路分析方法,AC电路分析,瞬态分析,零和极点,Bode图。
Zn 1-X CO X O(0≤x≤0.10)纳米粒子通过球磨制过程成功制造。使用X射线衍射,X射线(EDX),扫描电子显微镜(SEM)检查了[CO]/[Zn]对纳米粒子特性的影响,这些测量结果表现出生长六边形Wurtzagonal wurtzagonal wurtzagonal wurtzato wurtzate Zn 1-x o x o x o x o x o nano partiate co +2 co +2成功地组合了Zn Zn ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN CO +2成功地组合了Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn co +2。使用紫外线可见的(UV)吸收光谱研究了Zn 1-X CO X O纳米粒子的光学表征是指光频段中的红移,并且在ZnO矩阵内增加了COION,此结果证实,随着CO的增加,频带gab grake cop narrow缩小了CO的比率。应用振动样品磁力计的磁化测量值在共掺杂的ZnO纳米粒子中说明了磁滞回路。多亏了bandgap e g
了解废水成分的传统方法需要大量采样。该过程可能耗费大量资源,并且仍可能产生不完整的数据集。CoDaRT 提供了一种有效的替代方案。用户可以通过选择各种数据类型、分类特征、算法参数和其他变量来定制该工具以适合自己的分析。通过进行这些定制,用户可以确保 CoDaRT 满足他们独特的分析需求——无需额外的实地工作。该工具通过一个用户友好的界面进行操作,允许用户以 .csv 格式输入他们的数据。处理数据后,CoDaRT 会选择“最佳拟合”模型来替换缺失的成分。输出包括重要信息,例如成分浓度、模型性能指标和计算时间,使 CoDaRT 成为研究人员和行业利益相关者的宝贵资源。该工具由 FECM 资助,现已在 EDX 上使用。
1化学系,科学学院,埃及开罗纳斯尔市Al-Azhar大学。2研究与发展,埃及英国公司针对特种化学品和辅助机构,埃及。摘要本研究论文通过不同的单体组成探索了基于丙烯酰胺的同型聚合物和共聚物的产生。它强调通过部分交联的单体,尤其是甲基丙烯酸酯(UMA)来提高絮凝和凝结效率。使用FT-IR,SEM和EDX光谱工具对制备的聚合物和共聚物进行表征。当使用丙烯酸作为共晶(96.67%)(96.67%)和UMA单体(98.62%)时,絮凝效率的结果表现出显着改善,而与Magnafloc®LT27AG相关的97.89%则是97.89%。此外,这项研究提供了新的基于环保的聚合物,并易于回收的潜在材料与可持续发展目标保持一致。关键词:聚丙烯酰胺;水处理;絮凝剂;逆乳液聚合1。简介
在过去十年中,获取知识的方式发生了根本性变化。这一过程始于 2011 年左右,当时斯坦福大学教授 Andrew Ng、Sebastian Thrun 等人通过在线课程向所有人提供他们的 AI 课程(Ng & Widom,2014)。这种类型的课程通常被称为大规模开放在线课程 (MOOC)。流行的 MOOC 平台包括 Coursera、Udacity、edX、Udemy 等。直到 2011 年,AI 通常只能在有限数量的大学课程或书籍或论文中学习。此外,这些资源主要在发达国家提供。因此,新兴市场的潜在学习者无法轻松访问相应的资源。由于 MOOC,所谓的“人工智能知识民主化”已经开始从根本上改变我们的学习方式,并催生了新的人工智能超级大国,例如中国(Lee,2018)。
本研究包括 47 个断裂的 Ni-Ti 锉,这些锉位于根尖附近(根尖三分之一处)的弯曲部分,弯曲角度大于 15 度。Nd:YAP 激光的功率设置为 3 瓦,每脉冲 300 毫焦耳。采用 200 微米光纤,以 10 赫兹的脉冲模式运行,脉冲持续时间为 150 微米,能量密度为每秒 955.41 焦耳/厘米²。这些参数之前已验证过安全性。在整个过程中,激光光纤都放置在断裂锉附近。成功的定义为完全移除或绕过器械,而失败包括部分绕过、未绕过或侧向穿孔。使用扫描电子显微镜 (SEM) 来评估激光照射导致的牙本质壁的任何物理变化。采用能量色散X射线(EDX)光谱分析激光照射后牙本质管壁的化学成分,并计算可进行旁路手术时平均旁路时间。