工程生存材料(ELMS)通常包含细菌,真菌或夹在聚粉基质中的动物细胞,在药物输送或生物传感等领域提供了无限的可能性。确定在确保与ELM宿主兼容的同时保持ELM性能的条件至关重要,然后在体内测试它们。这对于减少动物实验至关重要,可以通过体外研究来实现。当前,尚无标准来确保ELM与宿主组织的兼容性。朝向这个目标,我们设计了一种基于96孔板的筛选方法,以简化跨培养条件的ELM生长,并确定其体外的兼容性潜力。我们显示了随着时间的流逝,三种细菌物种的增殖,并筛选了六种不同的细胞培养基。我们以双层和单层格式制造了榆树,并跟踪细菌泄漏,以衡量ELM生物植物的量度。筛选后,选择了适当的培养基,该培养基可持续榆树生长,并用于在体外研究细胞相容性。通过添加ELM上清液并分别测量细胞Mem Brane完整性和活/死染色,研究了鼠纤维细胞和人单核细胞上的ELM细胞毒性。我们的工作说明了一个简单的设置,以简化榆树兼容环境条件与主机的筛查。
摘要:微环境力学在损伤后的形态发生和免疫反应中起着至关重要的作用,但由于脊髓损伤 (SCI) 中脆弱的机械强度和氧化性生理环境阻碍了对微环境力学的探索。在这里,我们设计了具有与神经组织匹配的机械性能的对映体肽自组装水凝胶,以通过立体构象识别和随之而来的蛋白质亲和力差异持续操纵细胞膜张力和机械转导。D-对映体水凝胶诱导的细胞内张力松弛激活星形胶质细胞中的神经发生和 ECM 重塑,抑制促炎并促进小胶质细胞中的促再生,这显著促进了大鼠严重 SCI 模型中的神经保护和功能恢复。与非神经细胞相反,细胞内张力松弛诱导的形态发生可能是神经特性,因为下游的机械信号是由由此产生的神经源性形态变化激活的。总体而言,诱导细胞内张力松弛是促进神经再生的潜在有效策略。
Zakary S. S. Singer 1,2,&,JonathanPabón1,&,Hsinyen Huang 1,William Sun 1,William Sun 1,Hongsheng Luo 1,Kailyn Rhyah 2 Grant 1,Ijeoma Obi 1,Ijeoma obi 1,Courtney Coker 1,Courtney Coker 1,Charles M Rice 2,Charles M Rice 2,Tal Danino 1,3,4,Tal Danino 1,3,4,* 3 4 4 1 1002 York new York new York new Yar. new Year new Year new Year new Year new Year new Year new Yar.5 2病毒学和传染病实验室,洛克菲勒大学,纽约,纽约,纽约,10065,美国。6 3美国纽约哥伦比亚大学赫伯特·欧文综合癌症中心,美国纽约,10032,美国。7 4数据科学研究所,哥伦比亚大学,纽约,纽约,10027,美国。8 9&这些作者同样贡献了10 *通讯作者,tal.danino@columbia.edu 11 12摘要。细菌和病毒在肿瘤中有选择性复制的能力已导致合成工程13
模拟开放量子系统的动力学对于实现实用量子计算和理解新型非平衡行为至关重要。然而,在当今的实验平台上,耦合到工程储层的多体系统的量子模拟尚未得到充分探索。在这项工作中,我们将工程噪声引入一维十量子比特超导量子处理器,以模拟通用多体开放量子系统。我们的方法源于主方程的随机解开。通过测量端到端相关性,我们确定了源于强对称性的多个稳定态,该强对称性是通过 Floquet 工程在修改后的汉密尔顿量上建立的。此外,我们通过将初始状态准备为五量子比特链上不同扇区内状态的叠加来研究稳态流形的结构。我们的工作为开放系统量子模拟提供了一种可管理且硬件高效的策略。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
请参阅迪尔(Deere)在8-k(当前),10-Q(季度)和10-k(年度)上提交的报告,以了解可能导致实际结果与本演示文稿中的信息有实质性差异的因素以及信息调和财务指标以达到GAAP。过去的表现可能无法代表未来的结果。
机械力在健康和异常器官发育以及成人疾病过程中为细胞提供关键的生物学信号。在心肺系统中,机械力(例如剪切,压缩力和拉伸力)在各个长度尺度上起作用,而失调的力通常是疾病起步和进展的主要原因,例如在支气管肺发育不良和心肌病中。在体外模型中进行了设计,支持了许多组织和疾病特异性环境中的机械力的研究,从而为心肺发育和疾病提供了新的机械见解。该评论首先提供了基本的示例,其中机械力以多个长度尺度运行以确保精确的肺和心脏功能。接下来,我们调查了最新的工程平台和工具,这些平台和工具提供了新的手段来探测和调节体外和体内环境的机械力。最后,讨论了跨学科合作的潜力,以为多种心肺疾病提供新颖的治疗方法。简介
过去 20 年来,病毒样颗粒 (VLP) 一直是人们深入研究的主题。基于病毒样颗粒的疫苗在临床前和临床研究中显示出令人鼓舞的安全性和有效性结果。使用病毒样颗粒平台的乙肝、人乳头瘤病毒和戊肝疫苗已引发持久的免疫反应。VLP 疫苗可以通过各种设计进行定制,以引发治疗性体液、细胞介导或免疫调节反应。外来抗原在 VLP 表面的粘附会产生非源自亲本病毒的抗体反应。使用这种技术,可以偶联不同类型的抗原,例如蛋白质、多肽、荚膜多糖和微小化学化合物。嵌合 VLP 旨在改善对病毒样颗粒上呈现的外来肽的免疫反应。来自植物和细菌病毒的病毒样颗粒显示出对各种代谢疾病的良好治疗特性。四种针对具有治疗意义的多肽的免疫药物已进行人体试验。这些疫苗针对血管紧张素 II (ATII)、肿瘤坏死因子 α (TNF α )、β-淀粉样蛋白、生长素释放肽和白细胞介素 1 β (IL-1 β ),分别命名为 AngQb、TNFQb、CAD106、GhrQb 和 IL1bQb。本文概述了嵌合 VLP 平台以及 VLP 在开发针对各种传染病和代谢紊乱的免疫反应方面的成功应用。综述最后强调了与传统疫苗方法相比,基于 VLP 的疫苗接种的优势。马来西亚医学与健康科学杂志 (2024) 20(SUPP10): 281-290。doi:10.47836/mjmhs.20.s10.32
增加有助于STEM教学,研究和创新的个人,组织和地理区域的代表性和多样性。为了扩大参与STEM的参与,有必要解决公平,包容性问题,