摘要 未折叠蛋白反应 (UPR) 是一种细胞稳态回路,通过三条 ER-核信号通路调节 ER 中的蛋白质合成和加工。一条通路由肌醇需要酶 1 (IRE1) 触发,该酶剪接 X-box 结合蛋白 1 (Xbp1) mRNA,从而使 XBP1s 表达。另一条 UPR 通路激活激活转录因子 6 (ATF6)。我们在这里表明,小鼠巨细胞病毒 (MCMV)(一种原型 b 疱疹病毒)利用 UPR 来调节其自身的生命周期。MCMV 在感染后早期激活 IRE1-XBP1 通路以减轻 XBP1u(未剪接的 Xbp1 mRNA 的产物)的抑制。XBP1u 通过阻断 XBP1s 和 ATF6 对病毒主要立即早期启动子的激活来抑制病毒基因表达和复制。这些发现揭示了 XBP1s 和 ATF6 作为病毒生命周期激活剂的冗余功能,以及 XBP1u 作为 XBP1s 和 ATF6 介导的激活的强效抑制剂的意外作用。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年3月17日发布。 https://doi.org/10.1101/2024.03.15.585252 doi:Biorxiv Preprint
摘要 - 本文介绍了用于单端口访问(SPA)手术的可插入机器人效应器平台(IREP)的新型设计和初步运动分析。可以通过Ø15mm的皮肤切口将IREP机器人部署到体腔中,以执行水疗过程。它由两个类似蛇的连续机器人作为组织操纵的奴隶手术助手,连续机器人的放置的两个平行四边形机制,以及一个可控的立体声视觉模块,具有深度感知和工具跟踪的集成光源。本文介绍了该17多道手术机器人系统的设计注意事项和替代方案,计算和初步模拟。还介绍了使用IREP机器人进行电信操作的整体控制系统层次结构。
抽象目标骨关节炎是一种复杂的疾病,具有巨大的公共卫生负担。全基因组关联研究(GWAS)已经鉴定出数百个与骨关节炎相关的序列变体,但是支撑这些信号的效应基因在很大程度上仍然难以捉摸。了解三维(3D)空间中的染色体组织对于以组织特异性方式(例如,基因和调节元件之间的远处基因组特征(例如,基因和调节元件之间)之间的长距离接触至关重要。在这里,我们生成了原发性骨关节炎软骨细胞的第一个整个基因组染色体构象分析(HI-C)图,并确定了该疾病的新型候选效应基因。方法从8例膝关节骨关节炎患者收集的原发软骨细胞进行了HI-C分析,以将染色体结构与基因组序列联系起来。然后将鉴定的环与骨关节炎GWAS结果和来自原发性膝关节关节炎软骨细胞的表观基因组数据结合在一起,以通过增强子促进剂相互作用来鉴定参与基因调节的变体。结果,我们确定了与77个骨关节炎GWAS信号相关的染色质环锚固中的345种遗传变异。例如,PAPPA与胰岛素样生长因子1(IGF-1)蛋白的周转直接相关,而IGF-1是修复受损软骨细胞的重要因素。结论我们已经构建了第一张原代人软骨细胞的HI-C地图,并将其作为科学界的资源提供。这些变体中的十个直接存在于10个新描述的新描述的活跃增强子促进圈的增强区域中,并通过对公共可用的染色质免疫沉淀测序(CHIP-SEQ)进行多组学分析(CHIP-SEQ)和分析酶 - 可访问型染色体的分析(CHIP-SEQ),并使用测序对基因seeq for Generq for Negeq for Necter(ATAC-SEEQ)数据序列(ATAC-SEEQ)chornee chondeq forter(ATAC-SEEQ)序列(ch) SPRY4和PAPPA(与妊娠相关的血浆蛋白A)以及对已知参与骨关节炎的基因SLC44A2的进一步支持。通过将3D基因组学与大规模的遗传关联和表观遗传学数据整合在一起,我们确定了骨关节炎的新型候选效应基因,从而增强了我们对疾病的理解,并可以作为假定的高价值新型药物靶标。
abtract的人工智能和机器学习技术正在开发,即神经网络和系统体系结构将很快模仿人脑的结构和功能。因此,依靠当今人工智能和机器学习能力的有限分析技能的自主武器系统可能很快就会实现类似人类的判断。这种被称为神经形态计算的生物学启发的技术为武器的能力提供了突破性的突破,尤其是在战场环境的管理和分析中。未来的认知自主武器系统(爪)可以补充战斗中的重要作用,例如问责制义务,而他们独立地遵守了区别,相称性,军事必要性和人类的原则,可能会超越其人类和机器的前辈。
大麦 Mla 基因座含有功能多样化的基因,这些基因编码细胞内核苷酸结合的富含亮氨酸重复受体 (NLR),并赋予针对活体营养和半活体营养真菌病原体的菌株特异性免疫力。在本研究中,我们分离了一个大麦基因 Scs6 ,它是 Mla 基因的等位基因变体,但赋予对死体营养真菌 Bipolaris sorokiniana 分离株 ND90Pr (Bs ND90Pr) 的敏感性。我们生成了 Scs6 转基因大麦品系,并表明 Scs6 足以赋予天然缺乏受体的大麦基因型对 Bs ND90Pr 的敏感性。 Scs6 编码的 NLR(SCS6)被 Bs ND90Pr 产生的非核糖体肽(NRP)效应物激活,从而诱导大麦和本氏烟细胞死亡。MLA 和 SCS6 之间的域交换表明,SCS6 亮氨酸富集重复域是 NRP 效应物激活受体的特异性决定因素。Scs6 在野生和驯化大麦种群中均有保留。我们的系统发育分析表明 Scs6 是大麦特有的创新。我们推断 SCS6 是一种真正的免疫受体,很可能被 Bs ND90Pr 的非核糖体肽效应物直接激活,从而导致大麦易患疾病。我们的研究为未来开发不易受死体营养病原体修饰的作物合成 NLR 受体奠定了基础。
抽象目标骨关节炎是一种复杂的疾病,具有巨大的公共卫生负担。基因组广泛的关联研究(GWAS)已经鉴定出数百个骨关节炎相关的序列变体,但是这些信号支撑的效应基因在很大程度上仍然难以捉摸。了解三维(3D)空间中的染色体组织对于以组织方式(例如,基因和调节元件之间的遥远基因组特征(例如,基因和调节元素之间)之间的长距离接触至关重要。在这里,我们生成了原发性骨关节炎软骨细胞的第一个整个基因组染色体构象分析(HI-C)图,并确定了该疾病的新型候选效应基因。方法从8例膝关节骨关节炎患者收集的原发软骨细胞进行了HI-C分析,以将染色体结构与基因组序列联系起来。然后将鉴定的环与骨关节炎GWAS结果和来自原发性膝关节骨关节炎软骨细胞的表观基因组数据结合在一起,以通过增强子启动子相互作用来鉴定与基因调节有关的变异。结果,我们确定了与77个骨关节炎GWAS信号相关的染色质环锚固中的345种遗传变异。例如,PAPPA与胰岛素类似生长因子1(IGF-1)蛋白的周转直接相关,而IGF-1是修复受损软骨细胞受损的重要因素。结论我们构建了第一张原代人软骨细胞的高图,并将其作为科学界的资源提供。Ten of these variants reside directly in enhancer regions of 10 newly described active enhancer- promoter loops, identified with multiomics analysis of publicly available chromatin immunoprecipitation sequencing (ChIP- seq) and assay for transposase- accessible chromatin using sequencing (ATAC- seq) data from primary knee chondrocyte cells, pointing to two new candidate effector genes SPRY4 and PAPPA(妊娠与血浆蛋白A)以及对已知参与骨关节炎的基因SLC44A2的进一步支持。通过将3D基因组学与大规模的遗传关联和表观遗传学数据相结合,我们确定了骨关节炎的新型候选效应基因,从而增强了我们对疾病的理解,并可以作为假定的高价值新型药物靶标。
摘要:由柑橘黄单胞菌(Xcc)引起的柑橘溃疡病是全球大多数柑橘产区的重要经济病害。Xcc 分泌一种转录激活因子样效应物 (TALE) PthA4,与溃疡病易感基因 LOB1 启动子区的效应物结合元件 (EBE) 结合,激活其表达,从而引起溃疡症状。利用 Cas9/gRNA 编辑 EBE 区域已用于生成抗溃疡病的柑橘植株。然而,生成的大多数 EBE 编辑株系含有 1–2 bp 的插入/缺失,这更有可能通过 PthA4 适应来克服。TALE 的适应能力与与 EBE 的错配数量呈负相关。已知 LbCas12a/crRNA 产生的缺失比 Cas9 更长。在本研究中,我们使用了一种耐高温且更高效的 LbCas12a 变体 (ttLbCas12a),该变体含有单个替换 D156R,用于修改 LOB1 的 EBE 区域。我们首先构建了 GFP-p1380N-ttLbCas12a:LOBP,经证实,该变体在柚子 (Citrus maxima) 叶片中通过 Xcc 促进的农杆菌渗滤而发挥功能。随后,我们在柚子中稳定表达了 ttLbCas12a:LOBP。生成了八个转基因株系,其中七个株系显示 EBE 的 100% 突变,其中一个株系是纯合的。EBE 编辑株系具有高达 10 bp 的 ttLbCas12a 介导的缺失。重要的是,这七个株系具有抗溃疡病性,并且未检测到脱靶。综上所述,ttLbCas12a 可有效利用来生成具有短缺失的双等位基因/纯合柑橘突变系,从而为柑橘的功能研究和育种提供有用的工具。
基因设计的嵌合抗原受体(CAR)T细胞已成为几种晚期B细胞恶性肿瘤的有效治疗选择。血液学副作用于2023年分类为免疫效应子细胞相关的血肿性(ICAHT),非常普遍,并且可能易于临床相关感染。作为造成T细胞疗法后的造血重建,与化学疗法相关的骨髓抑制作用不同,这是一种用于早期和晚期ICAHT的新型分类系统。此外,已经开发了一个名为CAR-HEMATOXOX的风险分层评分,以确定具有ICAHT高风险的候选人,从而实现基于风险的介入策略。在治疗上,具有粒细胞刺激因子(G-CSF)的生长因子支持是治疗的主要手段,造血性干细胞(HSC)的增强是可用于G-CSF的患者(如果有的话)。尽管潜在的病理生理学仍然尚不清楚,但过去三年来的转化研究表明,汽车T细胞诱导的炎症和基线造血功能是延长细胞质的关键因素。在这篇综述中,我们概述了汽车T细胞疗法后血液学毒性的范围,并就未来的翻译和临床发展提供了观点。
GSK,Janssen,Karyopharm,Pfizer,Ra Capital,Regeneron,Sanofi;科学顾问委员会:Caris Life Sciences;董事会:Antengene;毫米中某些鱼类测试的专利。 C. F.报告咨询:Janssen;研究:Regeneron,Janssen;股票所有权:辅助。 P.M.V. 报告咨询:Abbvie,Astra Zeneca,BMS,GSK,Janssen,Karyopharm,Karyopharm,Lava Therapeutics,Regeneron,Sanofi;研究:Abbvie,Janssen,Regeneron。 S.D.R. 报告Honoraria:Janssen,BMS;指导委员会参与,Gracell Therapeutics,BMS;研究支持,Janssen,BMS,C4 Therapeutics,Gracell Therapeutics,Heidelberg Pharma;咨询:Genentech,Janssen,BMS。 J.Y.S. 报告咨询:风筝,Immpact Bio。 L.L. 报告咨询:萨诺菲异元。 S.F.P. 报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。 A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。GSK,Janssen,Karyopharm,Pfizer,Ra Capital,Regeneron,Sanofi;科学顾问委员会:Caris Life Sciences;董事会:Antengene;毫米中某些鱼类测试的专利。C. F.报告咨询:Janssen;研究:Regeneron,Janssen;股票所有权:辅助。P.M.V. 报告咨询:Abbvie,Astra Zeneca,BMS,GSK,Janssen,Karyopharm,Karyopharm,Lava Therapeutics,Regeneron,Sanofi;研究:Abbvie,Janssen,Regeneron。 S.D.R. 报告Honoraria:Janssen,BMS;指导委员会参与,Gracell Therapeutics,BMS;研究支持,Janssen,BMS,C4 Therapeutics,Gracell Therapeutics,Heidelberg Pharma;咨询:Genentech,Janssen,BMS。 J.Y.S. 报告咨询:风筝,Immpact Bio。 L.L. 报告咨询:萨诺菲异元。 S.F.P. 报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。 A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。P.M.V.报告咨询:Abbvie,Astra Zeneca,BMS,GSK,Janssen,Karyopharm,Karyopharm,Lava Therapeutics,Regeneron,Sanofi;研究:Abbvie,Janssen,Regeneron。S.D.R. 报告Honoraria:Janssen,BMS;指导委员会参与,Gracell Therapeutics,BMS;研究支持,Janssen,BMS,C4 Therapeutics,Gracell Therapeutics,Heidelberg Pharma;咨询:Genentech,Janssen,BMS。 J.Y.S. 报告咨询:风筝,Immpact Bio。 L.L. 报告咨询:萨诺菲异元。 S.F.P. 报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。 A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。S.D.R.报告Honoraria:Janssen,BMS;指导委员会参与,Gracell Therapeutics,BMS;研究支持,Janssen,BMS,C4 Therapeutics,Gracell Therapeutics,Heidelberg Pharma;咨询:Genentech,Janssen,BMS。J.Y.S. 报告咨询:风筝,Immpact Bio。 L.L. 报告咨询:萨诺菲异元。 S.F.P. 报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。 A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。J.Y.S.报告咨询:风筝,Immpact Bio。L.L.报告咨询:萨诺菲异元。S.F.P. 报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。 A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。S.F.P.报告咨询:制图生物科学;科学咨询委员会:利卡生物系统。A.J.C. 报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。 D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。A.J.C.报告咨询:BMS,自适应;研究:适应性生物技术,鱼叉,尼克塔尔,BMS,詹森,赛诺菲,abbvie。D.W.S. 报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。 D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。D.W.S.报告咨询:GlaxoSmithkline,Janssen,Sanofi,Abbvie,Bristol Myer Squibb,Pfizer,Bioline,Bioline,Arcellx,Astrazeneca,Genentech;研究:Gilead,Pfizer,Janssen,Bioline,Glaxosmithkline,Sanofi,Amgen,Cantex,Arcellx,Roche;指导委员会:Janssen;数据安全和监测:Karyopharm和独立审查委员会:Parexel。D.K.H. 报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。 其余的作者没有兴趣披露。D.K.H.报告咨询:BMS,Janssen,Legend Biotech,Pfizer,Karyopharm;研究:BMS,Karyopharm,自适应生物技术和五旬节骨髓瘤研究中心。其余的作者没有兴趣披露。
