抗体依赖性细胞介导细胞毒性 (ADCC) 是抗体的一种作用机制,通过这种机制,病毒感染或其他患病细胞被细胞介导免疫系统的成分(例如自然杀伤细胞)靶向破坏。ADCC 报告生物测定 F 变体是一种生物发光报告测定,用于量化 ADCC 作用机制 (MOA) 测定中治疗性抗体对通路激活的生物活性。ADCC 报告生物测定 F 变体可以使用此处描述的 ADCC 生物测定效应细胞 F 变体增殖模型 (a–c)(目录号 G9302)进行,该模型允许在独特的购买协议下进行细胞储存和增殖。该测定结合了简单的添加-混合-读取格式和优化的协议,以提供具有低变异性和高准确性的生物测定。这些性能特征使生物测定适合应用于抗体药物研究和开发。
CRISPR-CAS是细菌和古细菌中使用CRISPR RNA引导的监视复合物的自适应免疫系统,以靶向互补的RNA或DNA,以破坏1-5。定期间隔的目标RNA裂解是III型效应子复合物6-8的特征。在这里,我们确定了synechocystis型III-DV复合物的结构,这是从多蛋白到单蛋白III型效应物9、10,在裂解前和裂解后状态下的明显进化中间体。结构显示了效应子中的多生成融合蛋白如何以不寻常的排列束缚在一起,以组装成活性和可编程的RNA核酸内切酶,以及效应子如何利用与其他III类型效应子的靶RNA播种的独特机制。使用结构,生化和量子/经典分子动力学模拟,我们研究了三个催化位点的结构和动力学,其中靶RNA上的核糖的2'-OH在上层磷酸盐的线体自我裂解中起着核噬菌的作用。引人注目的是,大多数III型复合物的催化转移的排列类似于核酶的活跃位点,包括锤头,手枪和Varkud卫星核酶。我们的工作提供了对III型效应型复合物进化中重要的中间体对RNA靶向和裂解机制的详细洞察力。
简单摘要:根瘤菌ETLI MIM1(REMIM1)具有活性在自由生活和共生中的VI型蛋白质分泌系统。T6SS是一种纳米芳烃,将称为效应子的蛋白质分泌为真核和原核靶细胞。REMIM1 T6SS基因簇编码有毒效应子(RE78)以及免疫蛋白(RE79),如在大肠杆菌中表达时所证明的。另外,观察到RE78蛋白的毒性作用在细胞质之外,因为仅当将信号肽添加到其中时才发生对大肠杆菌的毒性作用。RE79在Remim1 Periplasm中发现,并且与T6SS的易位无关。此外,RE78/RE79对还参与细菌竞争和结节占用率。更好地理解该分泌系统的作用对于选择高度竞争性根茎的接种剂可能非常有用。
au:PleaseconfirnheadingLevelsarerePresentedCorrected:CRISPR介导的干扰依赖于指导性CRISPR RNA(CRRNA)和靶核酸之间的互补性,以提供防御噬菌体的防御。噬菌体逃脱了基于CRISPR的免疫力,主要是通过邻接基序(PAM)和种子区域中的突变。然而,包括2类核酸内切酶Cas12a在内的CAS效应子的先前特异性研究表明,单个不匹配的耐受性很高。在噬菌体防御的背景下,尚未对这种不匹配公差的效果进行广泛的研究。在这里,我们测试了针对由Cas12a-CrrNA提供的lambda噬菌体的防御,该噬菌体含有含有先前存在的对基因组DNA中基因组靶标的不匹配。我们发现大多数先前存在的crrna不匹配导致噬菌体逃脱,无论在体外是否不匹配消融cas12a裂解。我们使用高通量测序来检查CRISPR挑战后噬菌体基因组的目标区域。在目标中的所有位置的不匹配均加速了突变噬菌体的出现,其中包括不匹配的不匹配,这些不匹配大大减慢了体外的裂解。出乎意料的是,我们的结果表明,PAM距离区域中存在的错误匹配导致目标的PAM-DISTAL区域中选择突变。体外裂解和噬菌体竞争分析表明,双Pam-Distal错误匹配比种子和Pam-Distal mis-grountes的组合要高得多,从而导致了这种选择。这些结果表明,CAS效应不匹配的耐受性,现有的靶标匹配和裂解位点强烈影响噬菌体的演变。但是,使用CAS9的类似实验并未导致PAM-DISTAL不匹配的出现,这表明切割位置的位置和随后的DNA修复可能会影响目标区域内逃生突变的位置。多种不匹配的CRRNA的表达阻止了新的突变在多个靶向位置产生,从而允许CAS12A不匹配的耐受性提供更强,更长期的protection。
摘要 目的 标志性致癌基因 MYC 驱动大多数肿瘤的进展,但小分子药物直接抑制 MYC 尚未进入临床试验。MYC 是一种依赖几种结合伙伴发挥作用的转录因子。因此,我们探索了通过胰腺导管腺癌 (PDAC) 中的相互作用组靶向 MYC 的可能性。 设计 为了在所有 MYC 结合伙伴中找出最合适的靶点,我们构建了一个靶向 shRNA 文库,并在培养的 PDAC 细胞和小鼠肿瘤中进行筛选。 结果 出乎意料的是,发现许多 MYC 结合伙伴对培养的 PDAC 细胞很重要,但在体内却不是必需的。然而,有些对自然环境中的肿瘤也是必不可少的,其中 ATPases RUVBL1 和 RUVBL2 排名第一。生长素-降解元系统降解 RUVBL1 导致培养的 PDAC 细胞停滞(而非未转化细胞),并导致小鼠的肿瘤完全消退,而此前免疫细胞浸润。从机制上讲,RUVBL1 是 MYC 建立致癌和免疫逃避基因表达所必需的,从而确定 RUVBL1/2 复合物是 MYC 驱动癌症中可用药的弱点。结论我们研究的一个含义是 PDAC 细胞依赖性受环境的强烈影响,因此应在体外和体内进行基因筛选。此外,生长素-降解元系统可应用于 PDAC 模型,从而允许在活体小鼠中进行靶标验证。最后,通过揭示 RUVBL1/2 复合物的核功能,我们的研究提出了一种使胰腺癌可能对免疫疗法敏感的药物策略。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 2 月 4 日发布。;https://doi.org/10.1101/2024.09.30.614878 doi:bioRxiv 预印本
摘要 目的 标志性致癌基因 MYC 驱动大多数肿瘤的进展,但小分子药物直接抑制 MYC 尚未进入临床试验。MYC 是一种依赖几种结合伙伴发挥作用的转录因子。因此,我们探索了通过胰腺导管腺癌 (PDAC) 中的相互作用组靶向 MYC 的可能性。 设计 为了在所有 MYC 结合伙伴中找出最合适的靶点,我们构建了一个靶向 shRNA 文库,并在培养的 PDAC 细胞和小鼠肿瘤中进行筛选。 结果 出乎意料的是,发现许多 MYC 结合伙伴对培养的 PDAC 细胞很重要,但在体内却不是必需的。然而,有些对自然环境中的肿瘤也是必不可少的,其中 ATPases RUVBL1 和 RUVBL2 排名第一。生长素-降解元系统降解 RUVBL1 导致培养的 PDAC 细胞停滞(而非未转化细胞),并导致小鼠的肿瘤完全消退,而此前免疫细胞浸润。从机制上讲,RUVBL1 是 MYC 建立致癌和免疫逃避基因表达所必需的,从而确定 RUVBL1/2 复合物是 MYC 驱动癌症中可用药的弱点。结论我们研究的一个含义是 PDAC 细胞依赖性受环境的强烈影响,因此应在体外和体内进行基因筛选。此外,生长素-降解元系统可应用于 PDAC 模型,从而允许在活体小鼠中进行靶标验证。最后,通过揭示 RUVBL1/2 复合物的核功能,我们的研究提出了一种使胰腺癌可能对免疫疗法敏感的药物策略。
西密歇根大学 ScholarWorks 研究生院免费向您提供本硕士论文 - 开放获取版。西密歇根大学 ScholarWorks 授权管理员已接受本论文,将其纳入硕士论文。如需了解更多信息,请联系 wmu-scholarworks@wmich.edu 。