角度和极化选择性自发发射在染料掺杂的金属/绝缘体/金属纳米腔中Vincenzo Caligiuri*,Giulia Biffi,Milan Palei,Beatriz Martin-Garcia,Renuka devi Pothuraju,YannBretonnièredecionalverional verional ver v. v. v. v. v. v. v. V. V. V. V. V. Caligiuri,G。Biffi,M。Palei博士,B。Martin-Garcia博士,P.R。doi,意大利理工学院R. Krahne博士,通过Morego 30,16163 Italy Genoa,意大利电子邮件:roman.krahne@iit.it; vincenzo.caligiuri@iit.it V. Caligiuri物理系,卡拉布里亚大学,87036年,意大利G. Biffi Rende,R。D。Pothuraju,R。D。Pothuraju,化学和工业化学系,Genoa,Genoa,viaecaneso,Dodecaneso,31146,ITALOA,ITALY ECOL Y. BRETONIN,BRITENON,BRETENON。 Superieure de Lyon, CNRS UMR 5182, University Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France Keywords: Epsilon-Near-Zero, Polarized Spontaneous Emission, Push-Pull Chromanophores, Metal-insulator-Metal Cavities Directing and Polarizing the Emission of a Fluorophore is of FundaMental Importance in the
1. 简介光学活性有机材料的图案化是众多涉及有机发射极的应用的关键特征。有机材料的图案化通常使用软光刻工艺实现 [1,2],因为微电子领域中使用的传统光刻技术通常与敏感材料不兼容 [3]。尽管如此,软光刻通常需要复杂的层转移和表面化学,这取决于预想的器件结构。染料光漂白代表了一种替代的结构化方法。通常,光漂白被认为是有机发射极的限制 [4,5]。但是,可利用此特性来抑制染料的发射和吸收 [6],这可用于控制染料特性以实现强耦合应用 [7]。在本文中,我们提出了一种基于染料层局部光漂白 [7,8] 的新方法,从而无需复杂的光刻处理即可获得微结构有机材料。此外,我们利用工业激光写入器对材料进行局部光漂白。与所有无掩模光刻方法(例如基于空间光调制器的光刻 [9,10])一样,这种用途广泛的技术可以轻松制造任何类型的微结构平面几何形状。此外,光漂白方法的主要兴趣之一是它只改变吸收波长范围内的光学指数 [7]。因此,获得的结构强烈依赖于波长。为了验证我们方法的效率,我们建议将这一概念应用于制造不同形状和周期的波长选择性光栅。这种简单的加工技术可以作为先前描述的选择性波长光栅制造方法 [11–15] 的便捷替代方法,例如多重干涉 [11–13]、胆甾液晶 [14,15] 或等离子体系统 [16,17]。
摘要 挖掘噬菌体中的新酶活性对于开发新的生物技术工具仍然很重要。在本研究中,我们使用 MetaGPA(一种将宏基因组数据中的基因型与表型联系起来的方法)来识别脱氧胞苷脱氨酶,这是一种与宏病毒组中的胞嘧啶修饰高度相关的蛋白质家族。出乎意料的是,这些脱氨酶的一个子集在单核苷酸和单链 DNA 底物中都表现出对 5-甲基胞嘧啶 (5mC) 的偏好,而不是胞嘧啶 (C)。在甲基化组测序工作流程中,这些酶优先脱氨 5mC,这使得甲基化胞嘧啶能够直接转化,同时完全消除任何未修饰胞嘧啶的背景脱氨。这种直接转换允许以单碱基分辨率精确识别甲基化位点,具有无与伦比的灵敏度,为基因组和甲基化组的同时测序提供了广泛的应用。
摘要 - 目的:选择性听觉注意解码(AAD)算法处理大脑数据(例如脑电图),以解码一个人参加的多个竞争声源。例子是神经ste的助听器或通过脑部计算机界面(BCI)进行通信。最近,已经证明可以在无监督的环境中基于刺激重建的刺激重建来训练此类AAD解码器,在这种情况下,没有关于参加哪种声音源的地面真相。在许多实际情况下,这种地面真相标签不存在,因此很难量化解码器的准确性。在本文中,我们旨在开发一种完全无监督的算法,以估算竞争性说话者聆听任务期间基于相关的AAD算法的准确性。方法:我们通过将AAD决策系统建模为具有添加剂白色高斯噪声的二进制相移键通道来使用数字通信原理。结果:我们表明,针对不同量的培训和估计数据以及决策窗口长度,提出的无监督性能估计技术可以准确地确定AAD准确性。此外,由于不同的应用需要不同的目标准确性,因此我们的方法可以估计任何给定目标准确性所需的训练量最小。结论:我们提出的估计技术准确地预测了基于相关的AAD算法的性能,而无需访问地面图标签。在BCIS中,它可以支持强大的沟通范式,并提供护理人员的准确反馈。显着性:在神经启动的助听器中,我们方法提供的准确性估计值可以支持时间自适应解码,动态增益控制和神经反馈。
染料敏化太阳能电池 (DSSC) 是一种有前途的光伏 (PV) 技术,适用于需要高美学特征和能量生产的应用,例如建筑一体化光伏 (BIPV)。在此背景下,由于通过分子工程开发了新的敏化剂,DSSC 具有波长选择性。染料研究的悠久历史为该技术提供了不同的颜色以达到全色光吸收。然而,近 45% 的阳光辐射位于近红外 (NIR) 区域,而人类视锥细胞对此区域不敏感。本综述为读者提供了有关如何选择性地利用该区域以基于 DSSC 技术开发无色透明 PV 的关键信息。除了选择性 NIR 吸收剂外,三联光阳极、对电极和氧化还原介质共同有助于实现高美学特征。本文结合 BIPV 应用讨论了所有组件的详细信息、相互作用以及实现无色透明 NIR-DSSC 的技术限制。
摘要:蛋白激酶NUAK1与各种生物学功能有关,包括细胞粘附,迁移和增殖。遗传降低NUAK1表达已显着显示在Tauopathy小鼠模型中降低了人TAU的总水平,从而将这种激酶确定为神经退行性疾病的潜在治疗靶点。在本文中,我们描述了脑渗透剂的NUAK1效力,激酶 - 选择性和药代动力学的适当性,但在123300上不可选择性CDK4/CDK4/CDK6/NUAK1抑制剂。通过脚手架优化方法,我们已经确定了不同的化学型,与123300相比,对CDK激酶的效力和选择性提高了NUAK1抑制作用。我们为这些化合物提供了ADME分析和体内药代动力学数据。关键字:nuak1,激酶选择性,adme属性,体内概要文件
生物药物免疫疗法的出现彻底改变了癌症和自身免疫性疾病的治疗。然而,在某些患者中,抗药抗体 (ADA) 的产生会阻碍药物的疗效。ADA 的浓度通常在 1-10 pm 范围内;因此它们的免疫检测具有挑战性。针对用于治疗类风湿性关节炎和其他自身免疫性疾病的药物英夫利昔单抗 (IFX) 的 ADA 是焦点。报道了一种双极电解质门控晶体管 (EGT) 免疫传感器,该传感器基于还原氧化石墨烯 (rGO) 通道和与栅极结合的 IFX 作为特定探针。rGO-EGT 易于制造并具有低电压操作(≤ 0.3 V)、15 分钟内稳健的响应和超高灵敏度(检测限为 10 am)。提出了基于 I 型广义极值分布的整个 rGO-EGT 传递曲线的多参数分析。结果表明,即使在拮抗剂肿瘤坏死因子 α (TNF- 휶 )(IFX 的天然循环靶点)同时存在的情况下,该方法也可以选择性地量化 ADA。
Tommaso Nicolini,Shekhar Shinde,Reem El-Actar,Gerardo Salinas,Damien Thuau,Mamatimin Abbas,Matthieu Raoux,Jochen Lang,Eric Clout,Eric Clout,Alexander Kuhn,Alexander Kuhn,Alexander Kuhn* T. Nicolini博士,G。Salinas博士,G。Salinas,PROFIV。Bordeaux,CNRS,Bordeaux INP,ISM,UMR 5255,33607 PESSAC,法国电子邮件:kuhn@enscbp.fr S. S. S. S. Shinde,E。Cloutet Uni博士。 Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。 波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,Bordeaux,CNRS,Bordeaux INP,ISM,UMR 5255,33607 PESSAC,法国电子邮件:kuhn@enscbp.fr S. S. S. S. Shinde,E。Cloutet Uni博士。Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。 波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,Bordeaux,CNRS,Bordeaux INP,LCPO,UMR 5629,33615 Pessac,法国R. El-Actar,D。Thuau博士,M。AbbasUniv博士。波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,波尔多,CNRS,Bordeux INP,CBMN,UMR 5248,33600 PESSAC,法国,
摘要假设丘脑下核(STN)在反应停止信号的快速停止运动中起着核心作用。单单元记录这种作用的证据很少,但仍然不确定该作用与STN解剖学细分所描述的不同功能如何相关。在这里,我们使用非人类灵长类动物解决了知识的差距,以及区分反应性和主动作用抑制,开关和骨骼运动函数的任务。我们发现,STN神经元的特定子集具有与反应性动作停止或切换中因果关系一致的活性。重要的是,这些神经元严格隔离到STN的腹侧区域。在其他细分中编码任务维度(例如运动本身和主动控制)中的神经元。我们建议,STN参与反应性控制仅限于其腹侧部分,进一步暗示了脉冲控制障碍中的这一STN细分。
此外,对 LIM K1 与 LIJTF .. 和 TH25 7 结合的叠加共晶结构的分析(参见图 XX)表明,我们采用针对不同 α C-out 和 DF Gout 构象的骨架跳跃策略验证了我们的假设。由先导化合物 GS K48 1 在 RIP K1 中促进的构象和由 TH25 7 在 LIM K1 中促进的构象同样由 LIM K1 中的氧氮杂卓衍生物 LIJTF .. 诱导。在这两种结构中,都观察到 DFG 基序中苯丙氨酸的无表位翻转和 α 螯合物的向外旋转。此外,观察到的区域异构体热稳定性的丧失可以从共晶结构中得到合理解释,其中第二个吡唑氮原子的修饰导致与蛋白质的空间位阻。