摘要:对层堆叠的二维共轭金属 - 有机框架(2D C- MOF)的原子结构的了解是建立其结构 - 性质相关性的必要先决条件。为此,原子分辨率成像通常是选择的方法。在本文中,我们可以更好地理解有助于电子束弹性的主要特性以及2D C-MOF的高分辨率TEM图像中可实现的分辨率,其中包括化学组成,密度和C-MOF结构的电导率。结果,在所考虑的结构的最稳定的2D c-MOF中,在80 kV的加速电压下,在体和色素异常校正的tem的加速电压下,取下了0.95的。使用详细的从头算分子动力学计算来解释了通过与电子束的弹性相互作用在Cu 3(BHT)中诱导的复杂损伤机制。实验性和计算的敲入伤害阈值非常吻合。关键字:梁损伤,金属有机框架,高分辨率传输电子显微镜,结构剪裁,从头开始分子动力学
许多上述系统可以以颗粒物质的形式存在,其中诸如形态,布置,组成和孔隙率等参数控制其功能特性。颗粒可以表现出内在的内部孔网络。另外,以聚集的形式或填充成颗粒,柱或反应时,会从其填料结构中创建其他颗粒孔隙空间。当将这些不同的孔隙空间组合在一起时,会出现分层孔系统,可以根据运输,反应动力学或动态吸附来量身定制以提供增强的性质。[3,5,14]评估粒子和孔统计的评估,例如粒子和孔径,互连性,折磨或封闭/开放式孔隙率是表征和随后优化此类材料的关键。单个颗粒,它们作为功能结构的团聚形式以及组合的颗粒内和颗粒孔隙空间通常延伸到几个长度尺度上。内部孔的范围从微(<2 nm)到介孔(2 - 50 nm)的状态,直至较大的大孔(> 50 nm),而颗粒间孔通常是较大的大孔。[14]单个颗粒的大小只有几nm到几十µm,它们的团聚和包装结构通常是宏观尺寸的。[5]难度是对所有必要的,函数确定的特征的完整评估,仅使用一种3D表征技术就无法执行。
图。2反极图(IPF),显示了使用最近的邻居算法将晶粒方向分组为八个方向组之一。颜色指示分配给每个方向组的工作函数值,这是W表面的功能值,其最稳定的化学计量学BA-O通过密度功能理论(DFT)计算得出。
- 风洞 - 高分辨率粉末衍射仪(HRPD) - 残余应力衍射仪(RSD) - 小角度中子谱仪(SANS) - 核磁共振(NMR) - 电磁兼容性(EMC) - 等等。
量子相变及相关现象 强关联的理论模型和方法 强关联系统中的非平衡现象 非常规超导性 新材料中的超导性 量子磁性、斯格明子和挫折 金属-绝缘体跃迁 用于 SCES 研究的大型研究设施和新技术 SCES 的设备和应用 具有几何特性的关联材料 狄拉克/外尔半金属和拓扑非平凡材料 二维材料 关联相的费米面和电子结构 关联系统中的强自旋轨道相互作用 多铁性材料及相关材料 量子比特的材料和设备 纳米级的突发现象 材料设计和新型先进材料
最近,Phan 等人 [14] 报告了准平行弓形激波下游地球磁鞘中纯电子重联的卫星观测结果,其中 X 点两侧相反方向的阿尔文电子喷流提供了重联的“确凿证据” 。在航天器穿过磁鞘的整个轨迹中,没有观察到与重联相关的阿尔文离子喷流。二维 (2D) 粒子胞内 (PIC) 模拟表明,当岛间系统尺寸 Δ 减小到离子动力学尺度的 40 倍以下时,离子开始与重联过程脱钩 [15] 。二维纯电子重联的重联速率和电子流出速度明显高于离子耦合重联 [15] ,三维重联甚至更高 [16] 。在磁化等离子体湍流[17 – 21]和近无碰撞冲击[22 – 24]中,纯电子重联被认为是能量级联到动能尺度的重要过程。然而,人们对纯电子重联过程中的能量转换与完全离子耦合重联的区别了解甚少,后者
摘要:量子状态是由无法直接测量相的波函数描述的,但在干扰和纠缠等量子效应中起着至关重要的作用。相对相信息的损失称为折叠,是量子系统与其环境之间的相互作用引起的。变形也可能是通往可靠量子计算的路径上的最大障碍。在这里我们表明,即使在一个孤立的分子中也发生了变质,尽管并非所有相信息都会通过对中央电子自旋量子QPIT与附近核自旋相互作用的原型磁分子中相互作用的理论研究。依赖分子的残留相干性为提议解释实验的核自旋差屏障提供了微观合理化。附近分子对破裂性的贡献对分离有非平凡的依赖性,在中间距离处达到峰值。分子仅影响长期行为。由于残差相干性很容易计算和与连贯性时间良好相关,因此可以用作磁分子中连贯性的描述符。这项工作将有助于建立设计原理,以增强分子旋转量子的连贯性,并有助于激发进一步的理论工作。
我们发现嘧啶胸腺嘧啶 (T) 和胞嘧啶 (C) 的 VAE 仅相差 0.03 eV,嘌呤鸟嘌呤 (G) 和腺嘌呤 (A) 的 VAE 仅相差 0.08 eV。与“化学”直觉相反,嘧啶的垂直形成的阴离子比较大嘌呤的阴离子更稳定,大约高 0.2 eV。考虑到每种化合物中中性势面和阴离子势面之间的 Franck-Condon 重叠,我们发现所有碱基都有一系列共同的能量,电子可在该能量范围内附着。换句话说,碱基的最低临时阴离子状态在实际意义上是简并的。此外,我们还观察到与腺嘌呤以外所有碱基的最低空分子轨道 (LUMO) 相关的临时阴离子核运动的证据。这表明电子注入这些轨道强烈激发中性分子的振动模式。
材料推动技术发展,例如微电子和纳米技术中的硅基半导体。这些材料虽然本质上是量子的,但它们的宏观特性并不表现出量子世界最引人注目的方面之一:纠缠。因此,半导体中的电子可以在单电子水平上建模。然而,一种新的范式——量子材料——正在出现,在量子计算领域具有潜在的应用潜力。在这些系统中,电子是纠缠的,单电子图像不再是材料特性的准确描述。相反,需要多体、N 电子处理。当前的 QIS 捕获并利用单个原子或离子作为量子比特,即经典比特的量子模拟。由于实验的不完善,需要许多离子才能累积起来代表一个可用的“逻辑”量子比特。捕获这些离子具有挑战性,因此系统既庞大又昂贵。世界上最先进的系统由 IBM 创建,仅捕获 53 个离子。量子材料的一种可能应用是利用物质深处的 N 电子纠缠作为 QIS 应用的资源。材料中的每个纠缠电子都充当量子比特,从而实现更大规模的 QIS。在 Mourigal 实验室博士后 Zhiling Dun 的帮助下,该项目的目标是合成和表征电子自旋可能纠缠的磁性材料。
摘要。在这项研究中,使用了密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)方法,研究了硫代齐奈德富勒烯C 60纳米复合物的物理和化学特性。最重要的目标是增加C 60偶极力矩作为一种新型药物输送系统,以携带硫代齐奈德。在基态下使用了几个描述符,包括基于HOMO和LUMO轨道能,硬度,柔软度,化学势和Mulliken电荷的电化学性质。该纳米复合物的偶极矩约为2.61d,这表明其在极溶剂中中度溶解度。使用CAMB3LYP方法获得的UV-VIS频谱表明,在复合物形成后,吸收光谱的蓝移度约为= 24 nm。基于激发态的计算和第一个模式中的孔 - 电子理论,在复合物的不同吸收波长处观察到光诱导的电子传递(PET)现象。使用电子传递的Marcus理论,计算电子转移的激活的自由能和所有宠物的电子转移的自由能。