我们通过电子顺磁共振(EPR)光谱研究了n型Si掺杂-Ga 2 O 3块体样品的传导机制,并证明了室温下GHz频率范围内的载流子动力学。Si浅施主EPR和传导电子自旋共振(CESR)光谱表现出不寻常的线宽和线形温度依赖性,这表明了可变范围的跳跃传导和施主聚集。EPR信号强度的温度依赖性可以用40K以下和40K以上温度范围内能量为4meV和40meV的两个热激活过程来拟合。40meV的值归因于Si浅施主的电离能,表明跳跃通过导带进行。在T=130K以上和室温以下,可以观察到传导电子自旋共振(CESR),线宽B<1G减小,这表明自旋翻转散射可忽略不计。为了说明 Ga 2 O 3 中浅施主的异常行为,我们分析了 ZnO 中的氢浅施主,我们观察到了不同的“经典”行为,其特点是施主在 40K 以下定位,在 T=90K 以上导带中发生热电离。在 ZnO 中,由于高温下谱线过度增宽,因此只能在 90K 的小温度范围内观察到 CESR。
国际原子能机构放射性同位素生产和辐射技术计划的主要目标之一是提高国际原子能机构成员国利用放射性同位素技术辐射加工、成分分析和工业应用方法的专业知识和能力,以满足国家需求,并吸收新的发展成果,以提高工业过程效率和安全性、开发和表征增值产品以及处理污染物/危险材料。国际原子能机构辐射技术系列出版物提供以下领域的信息:使用电离辐射对材料进行辐射加工和表征,以及放射性示踪剂、密封源和无损检测的工业应用。这些出版物拥有广泛的读者群,旨在满足科学家、工程师、研究人员、教师和学生、实验室专业人员和讲师的需求。国际专家协助国际原子能机构秘书处起草和审查这些出版物。本系列中的一些出版物也可能得到相关领域活跃的国际组织和专业协会的认可或共同赞助。出版物有两类:国际原子能机构辐射技术系列和国际原子能机构辐射技术报告。
nist.gov › publication › get_pdf PDF 作者:MW Keller · 2007 · 被引用次数:61 — 作者:MW Keller · 2007 被引用次数:61 work linking the calculable capacitor to the quantum Hall effect [8], it provides a way of closing the quantum metrology triangle [9, 10].In ...
扫描电子显微镜 (SEM) 是一种成像和分析技术,用于表征微米级和纳米级材料的结构和化学性质。目前,它被电池材料和电池制造商广泛用于材料研发、质量控制和故障分析过程中的有效表征工具。用于制造电池的材料差别很大;例如,隔膜材料是电绝缘的并且对光束敏感,而锂金属阳极样品是导电的并且对空气极为敏感。科学家和工程师面临着各种挑战,需要准确提取不同电池样品的结构信息。因此,SEM 制造商应为电池领域提供有关电池表征的样品处理和成像策略的指导。
上下文:今天,由于储能设备的不断增加(移动和固定),专门用于电池的研究仍然是一个主要挑战。li-ion技术是该领域的领导者,涉及有效但有限的电极材料,导致新材料的发展。
我们将本期特刊献给了Andrij Shvaika和Oleg derzhko,以庆祝他们的第60个候选人。如照片中所示,Andrij和Oleg一生都是同事,其中一个在小学时期向他们展示,另一个在2019年在LVIV举行的一次会议上向他们展示。Andrij和Oleg在同一研究所工作了数十年,也是《凝聚力物理学》杂志的副编辑。在本期特刊中庆祝他们两个是在努力。所选的贡献涵盖了与两个禧年的主要科学利益密切相关的广泛主题,以承认其对科学的独特和宝贵贡献。我们很高兴感谢所有通过将论文提交本期特刊的作者,所有匿名裁判,他们仔细阅读并进行了建设性地审查了他们的所有匿名裁判,以及在最终阶段关心特殊问题的冷凝物理学物理学。
活跃的代谢对肿瘤的生长至关重要。线粒体是真核生物大多数细胞中的关键细胞器,功能正常的线粒体是癌细胞存活的必要条件。它们通常被称为细胞的“能量生产工厂”,尽管近几十年来人们越来越认识到它们在组织大分子合成和细胞信号传导方面的重要作用。现在人们了解到,这三种线粒体功能都在癌细胞的存活和繁殖中发挥作用。三种代谢途径在人体细胞中产生能量,即氧化磷酸化 (OXPHOS)、糖酵解和脂肪氧化。这三种途径在癌细胞中通常失调,是治疗的潜在靶点,但在本综述中我们将重点介绍 OXPHOS 途径。OXPHOS 代谢途径在驱动肿瘤细胞增殖方面具有两个关键功能。它以 ATP 的形式提供生物能量需求,并将葡萄糖中的碳输送到大分子合成中,充当分解代谢和合成代谢的枢纽。线粒体基质中的三羧酸循环 (TCA) 酶和电子传递链 (ETC) 的跨膜蛋白复合物是此过程的核心。将碳燃料送入 TCA 循环会产生电子供体 NADH 和 FADH 2,它们为 ETC 复合物 I 至 IV 提供电子。当电子沿着这些复合物传递时,质子被复合物 I、III 和 IV 泵入膜间隙。这种质子动力的产生以及随后质子流回
摘要:如今,硅片上的电子自旋量子比特似乎是制造未来量子微处理器的一个非常有前途的物理平台。为了打破量子霸权障碍,数千个量子比特应该被封装在一个硅片中。微电子工程师目前正在利用当前的 CMOS 技术将操控和读出电子设备设计为低温集成电路。这些电路中有几个是 RFIC,如 VCO、LNA 和混频器。因此,量子比特 CAD 模型的可用性对于正确设计这些低温 RFIC 起着核心作用。本文报告了一种用于 CAD 应用的基于电路的电子自旋量子比特紧凑模型。本文对所提出的模型进行了描述和测试,并强调和讨论了所面临的局限性。
技术计算机辅助设计用于模拟半导体工艺和器件,这个领域已变得日益复杂和异构。如今,集成电路的加工需要超过 400 个工艺步骤,而最终的器件往往具有复杂的 3D 结构并包含各种材料。只有考虑从原子(界面、缺陷等)到纳米(量子限制、非体积特性等)到完整芯片尺寸(应变、热传输等)的所有长度尺度,以及从飞秒到秒的时间尺度的影响,才能理解完整的器件行为。电压、电流和电荷已缩放到如此低的水平,以至于电子噪声、统计效应和工艺变化都有很大的影响。基于新材料(例如 2D 晶体)和物理原理(铁电体、磁性材料、量子比特等)的器件对标准 TCAD 方法提出了挑战。虽然物理学界开发的模拟方法可以描述基本的器件行为,但它们通常缺乏重要的模拟功能,例如瞬态模拟或与其他 TCAD 工具的集成,并且对于日常使用来说速度太慢。由于半导体技术的复杂性,通过在理想条件下观察孤立器件的单个方面来评估工艺或器件结构变化对电路性能的影响变得越来越困难。相反,需要一个能够处理嵌入在芯片环境中的实际器件结构的 TCAD 工具链。TCAD 的所有方面都需要新的方法,以确保基于灵活的模拟模型的高效工具链,从原子效应到电路行为,这些模型可以处理新材料、器件原理和随之而来的大规模模拟。IEEE 电子设备学报的这期特刊将介绍 TCAD 在工艺和器件行为领域的最新发展和最新技术,重点介绍改进工具链的新方法。论文必须是新的、原创的材料,且未受版权保护、未在任何其他档案出版物中出版或接受出版,目前尚未考虑在其他地方出版,并且在《电子设备交易》审议期间不会提交到其他地方。感兴趣的主题包括但不限于:
图2一组用于模拟示例铝电子WTBH的电路模型。此处,电路4,电路5和电路6也称为realAmplites,paulitwodesign和效率2电路。ry和rz代表具有参数ө的参数性电路。所有电路图都是使用Qiskit生成的。带有“ x”的电线和盒子代表受控的X门。带有两个实正方形的电线,例如电路-5中代表受控的Z门。