低能电子衍射模式包含有关所研究表面结构的精确信息。然而,从复杂的衍射模式中检索真实的空间晶格周期性是有挑战性的,尤其是当建模的模式源自由大型单位单元组成的超级晶格,该单位细胞由多个对称性等效域组成,而与底物没有简单关系。这项工作介绍了Proleted Studio软件,该软件旨在提供低能电子衍射模式的简单,直观和精确的建模。交互式图形用户界面允许实时建模实验衍射模式,所描绘的衍射点强度的变化,不同衍射域的可视化以及对任何晶格点或衍射点的操纵。单位细胞,晶格向量,网格和比例尺的可视化以及以位图和矢量格式导出现成的模型的可能性显着简化了结果的建模过程和发布。
在过去的几年中,已使用两种主要方法来研究Fe 2+的分布和局部协调环境和固体中的Fe 3+离子在微米或亚微米计尺度上:(1)X射线吸收光谱(XAS)与同步型光源(尤其是第二个和第三代能量的启发)(尤其是较高的能量射击量和高量)(尤其是较高的能量范围)(2001)和(2)具有透射电子显微镜的电子能量损失光谱(EEL)(在纳米尺度上提供高空间分辨率)(Van Aken等人。1998,1999)。 For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components. 铁表现出未填充的3D状态(3d 51998,1999)。For XAS and EELS, the methodology consists first of probing the absorption jump on either side of the Fe- K edge [1s → con- duction band (CB) electronic transitions], or the Fe- L 2,3 edge (2p → CB), or the Fe- M 2,3 edge (3p → CB), and then of processing the experimental absorption to extract the information from both Fe 2+ and Fe 3+ components.铁表现出未填充的3D状态(3d 5
学士:首尔国立大学电子工程学士 (1996 - 2000) 硕士:首尔国立大学电子工程学士 (2000 - 2002) 博士:首尔国立大学电子工程学士 (2002 - 2006) 工作经历
探究凝聚态物质的微观电子结构。虽然可以从光电效应的物理学中轻松理解其基本原理,但在将 PES 信号转换为有用信息之前,还需要进行许多假设和近似。假设学校的学员已经具备该方法的一些基本知识(作为实践者或理论家),我的入门讲座将尝试概述 PES 方法论的核心概念和思想,并为后续的 SUCCESS 讲座计划做好准备。除了显而易见的要点之外,我还将尝试涉及一些特殊问题,这些问题在标准文献中并不常见,但随着该技术发展到新的光子强度和/或能量范围,这些问题可能会变得相关。我计划涵盖的主题包括(不一定按此顺序,只要时间允许):
数字图像的处理不断获得数量和相关性,对数据存储,传输和处理能力的需求不断增加。传输电子显微镜仪器的最新进展,尤其是在检测器技术中,已经推动了各种方式的数据生产。例如,如今,人们可以通过利用直接电子检测器[1]来想象最多生成200tb/hr,需要智能方法来提取科学有意义的信息。尽管在人工智能(AI)和机器学习(ML)方法的帮助下,显微镜数据解释取得了很多进展[1,2],但与增长的数据解释数据量相关的挑战仍然丰富。预计这将进一步加剧原位 /操作测量的气象升高以及数据挖掘,分析和其他计算需求的相关挑战。
1皮肤病学部门,IRCCS基金会CA'Granda Maggiore Policlinico医院,20122年意大利米兰; maurizio.romagnuolo@unimi.it(m.r。); Alessandra.dibenedetto@policlinico.mi.it(A.D.B.); angelo.marzano@unimi.it(a.v.m.)2病理单位,IRCCS基金会CA'Granda Maggiore Policlinico医院,20122年意大利米兰; francesca.boggio@policlinico.mi.it 3米兰研究大学病理生理学与移植系,20122年米兰,意大利米兰4科学研究所IRCCS E. Medea,生物信息学,23842意大利Bosisio Parini,意大利帕里尼; rachele.cagliani@lanostrafamiglia.it(r.c.); manuela.sironi@lanostrafamiglia.it(M.S。)5米兰比科卡大学医学与外科系,意大利蒙扎20900; biagioeugenio.leone@unimib.it(B.E.L. ); barbara.vegani@unimib.it(b.v。) * corpsondence:chiara.moltrasio@policlinico.mi.it.it†这些作者为这项工作做出了贡献。); barbara.vegani@unimib.it(b.v。) * corpsondence:chiara.moltrasio@policlinico.mi.it.it†这些作者为这项工作做出了贡献。
埃及吉萨 12578,十月六日城,十月花园,泽维尔科技城 1 号。 2 国家研究中心 (NRC) 应用有机化学系,Dokki, 12622,吉萨,埃及; 3 巴黎萨克雷大学、法国国立科学研究院、奥赛分子化学与材料研究所 (ICMMO)、欧洲化学与物理联合会 (ECBB)、法国奥赛 Rue du Doyen Georges Poitou 91400 420 号楼
简介。数十年的研究表明,辐射能够极大地改变材料的物理化学性质。这种影响会导致材料和相关设备的退化,并限制其在特定应用中的使用 [1-7]。电子在物质中的路径上可以以多种方式相互作用 [8]。它们的大部分能量通过与电子的相互作用转移到材料中:这些碰撞是电离现象的原因。同时,电子还可以与原子核发生碰撞,导致它们从常规晶体位置移位。该过程的结果是产生空位和间隙原子。这种过程被定义为非电离能量损失,它决定了位移损伤 [6, 9]。位移损伤会导致材料性能和设备在恶劣环境中的性能下降。电子设备 [6] 和用于太空应用的太阳能电池 [5, 10] 就是这种情况。在这一领域,电子辐照是一种广泛使用的工具,用于测试太阳能电池的辐射响应,并确保在整个卫星任务期间产生足够的能量。随着时间的推移,电子辐照已转向寻找更耐辐射的材料,以及生产能够抵抗太空极端条件的太阳能电池[11]。因此,辐照越来越多地参与到研究项目中,这种趋势仍在持续和发展。在其他研究领域也可以找到类似电子辐照的例子[1]。高能电子(HEE)辐照与其他辐照技术确实不同:事实上,由于电子质量小,向较重原子核的能量转移仍然非常小。质子或其他重粒子可以诱导类似的损伤过程,但这些粒子传递的能量非常重要,因此第一次碰撞会产生一系列二次事件,导致产生复杂且广泛的缺陷[1,6,9,12]。相反,HEE 辐照主要产生孤立的点缺陷,即由空位和间隙原子组成的 Frenkel 对 [13]。然后,当
maggie@lingenfelder-lab.com从简单的愿望到“看到原子”到探索绿色能源应用的电子旋转的旅程,这反映了我们对过去几十年来原子和亚原子世界的理解时的深刻进步。这些进步不仅在智力上令人满意,而且具有应对全球挑战的潜力,例如可持续能源。在我们的研究小组中,我们通过创建自定义的纳米结构材料来应对可持续能源的挑战,从而从自然界(生物仿生)中汲取灵感,从而整合了界面化学和表面物理学的基本原理。在此演示文稿中,我在光合作用过程中汲取灵感,以设计驱动电催化能量转换过程的土壤丰富的材料:例如CO 2电源和水分裂。使用尖端扫描探针显微镜使我们能够通过原位成像可视化纳米级的动态电化学过程[1]。我们收集的详细原子尺度信息激发了我们的进一步探索:使用利用电子旋转来增强电催化转换过程的非常规策略[2-4]。这种创新的方法使我们能够开发出最先进的材料,这些材料的电催化效率高两到三倍[3-4]。参考文献[1] Hai Phan,T.,Banjac,K.,Cometto,F。等。在Operando CO2电气中,电势控制的Cu-nanocuboid和石墨烯覆盖的Cu-nanocuboid的出现。纳米莱特2021 21,2059-2065。[2] Vensaus,P.,Liang,Y.,Ansermet,JP。等。通过磁场对质量传输的影响增强电催化。自然社区。2024,15,2867。[3] Liang,Y.,Banjac,K.,Martin,K。等。通过手性分子官能化杂交2D电极的手性分子官能化增强了电催化氧的进化。自然公共2022,13,3356。[4] Y. Liang,M。Lihter,M。Lingenfelder,用于清洁能量的电催化中的自旋控制。isr。J. Chem。 2022,62,e202200052。J. Chem。2022,62,e202200052。