使用场效应晶体管 (FET) 来探索具有传输测量的原子级薄磁性半导体是困难的,因为大多数 2D 磁性半导体的极窄带会导致载流子局域化,从而阻止晶体管工作。本文表明,CrPS 4 的剥离层(一种带宽接近 1 eV 的 2D 层状反铁磁半导体)可以实现在低温下正常工作的 FET。使用这些设备,可以测量电导率作为温度和磁场的函数,以确定完整的磁相图,其中包括自旋翻转和自旋翻转相。确定了磁导率,它在很大程度上取决于栅极电压。在电子传导阈值附近达到高达 5000% 的值。尽管研究中使用的 CrPS 4 多层厚度相对较大,但栅极电压还可以调整磁态。结果表明,需要采用具有足够大带宽的二维磁性半导体来实现正常运行的晶体管,并确定一种候选材料来实现完全栅极可调的半金属导体。
最近利用超分辨率活细胞显微镜进行的实验表明,非肌肉肌球蛋白 II 微丝比以前认为的更具动态性,经常表现出塑性过程,例如分裂、连接和堆叠。在这里,我们结合序列信息、静电和弹性理论来证明 14.3、43.2 和 72 nm 处的平行交错具有强烈的从微丝上散开头部的趋势,从而可能引发活细胞中看到的各种过程。相反,重叠 43 nm 的直线反向平行交错非常稳定,很可能引发微丝成核。使用新定义的能量景观中的随机动力学,我们预测肌球蛋白杆之间的最佳平行交错是通过反复试验过程获得的,其中两个杆通过滚动和拉链运动以不同的交错连接和重新连接。实验观察到的交错是接触时间最长的配置。我们发现,从异构体 C 到 B 再到 A,接触时间逐渐增加,A-B 异二聚体出奇地稳定,肌球蛋白 18A 应该以较小的交错结合到混合细丝中。我们的研究结果表明,细胞中的非肌肉肌球蛋白 II 细丝首先由异构体 A 形成,然后转化为混合 AB 细丝,正如实验所观察到的那样。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
ESD 测试的首选方法是接触放电。如果不能应用接触放电,则应改用空气放电。每种测试方法的电压列于提供的表格中。每种方法的电压不同是由于测试方法不同。重要的是要注意,不同的电压并不意味着测试方法之间的测试严苛程度相同。
多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
1 航空航天系博士生,oliverjr@mit.edu,AIAA 学生会员 2 航空航天系访问学生,sebastian.hampl@tum.de 3 航空航天系教授,plozano@mit.edu,AIAA 副研究员
我们采用一种通过精心选择的约化变量空间来优化构象途径的方法,以增进我们对蛋白质构象平衡的理解。自适应偏置路径优化策略利用约化变量空间中路径区域的无限制增强采样来确定两个稳定终态之间的宽路径。应用于 Src 酪氨酸激酶催化结构域的失活转变揭示了对这种研究透彻的构象平衡的新见解。通过识别沿路径的运动和结构特征获得的机制描述包括支持转变的切换静电网络的细节。沿路径的自由能垒来自螺旋 α C 的旋转,它与活化环 (A 环) 以及 C 叶远端区域的运动紧密相关。约化变量的路径轮廓清楚地显示了高度相关的运动。网络中残基之间的静电相互作用交换是这些相互依赖运动的关键。此外,全原子模型在定义路径时提高的分辨率显示出 A 环运动的多个组成部分,并且 A 环的不同部分在整个路径的长度上做出贡献。
具有相对简单架构的 MEMS 设备可用于创建可调涡旋光束。一种这样的设备被称为“筷子”设备,采用两个平行电极的形式,它们之间由一个狭窄的间隙隔开,并施加有电偏置电压 [23,24]。由于电极上的电荷分布类似于一系列平行偶极子 [24] 上的电荷分布,因此可以将其与 Aharonov-Bohm 效应和轴向磁化针的使用进行类比 [25]。正如最近的一篇论文 [26] 所解释的那样,电子束上的每种磁效应都可以使用一组电极来再现。与磁性材料相比,使用静电元件的优势包括它们具有更大的灵活性和可调性,以及可以使用高度紧凑的静电 MEMS 相位板来引入相对较大的相位效应。
近年来,单个原子(SAS)的使用已成为光催化H 2代的迅速增长。在这里,Sa Noble金属(主要是PT SA)可以充当高度有效的共同催化剂。用最大分散的SA染色氧化物半导体表面的经典策略依赖于合适的贵金属配合物的“强静电吸附”(SEA)。在TIO 2的情况下 - 经典的基准光催化剂 - SEA需要吸附阳离子PT复合物,例如[(NH 3)4 pt] 2 +,然后对表面结合的SA进行热反应。虽然在文献中广泛使用,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。 总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。,但在目前的工作中,直接比较表明,基于SAS的还原性锚定为基于六氯铂(IV)酸(H 2 PTCL 6)的反应性依恋,而与SAS相比,与SAS相比,SAS在构造中直接导致SAS - 最有效的活动 - 最有效的活动 - 最有效的活动 - PT加载且没有任何热沉积治疗。总体而言,这项工作表明,反应性沉积策略优于经典的海洋概念,因为它提供了直接的电子连接的SA锚定,因此导致光催化中高度活跃的单原子位点。
Military Reference Specifications MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For MIL-PRF-38534 Hybrid Microcircuits, General Specification For MIL-STD-202 Test Method Standard, Electronic and Electrical Components MIL-STD-883 Test Methods and Procedures for Microelectronics MIL-STD-1686 Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment
