摘要 — 多重模式布局分解 (MPLD) 已被广泛研究,但到目前为止,还没有一个分解器在结果质量和效率方面胜过其他分解器。这一观察促使我们探索如何为给定的布局图自适应地选择最合适的 MPLD 策略,这是一个并非平凡且仍未解决的问题。在本文中,我们提出了一种基于图卷积网络的布局分解框架来获得布局的图嵌入。图嵌入用于图库构建、分解器选择、图匹配、针迹去除预测和图着色。此外,我们设计了一种纯粹依赖于消息传递图神经网络的快速非针迹布局分解算法。实验结果表明,与快速但非最优的启发式方法相比,我们基于图嵌入的框架可以在广泛使用的基准中实现最佳分解,并且运行时间显着下降。
神经影像学研究针对少量参与者和刺激物产生了数 GB 的时空数据。研究人员很少尝试建模和检查个体参与者之间的差异——只要使用正确的统计工具,即使在小样本中也应该可以解决这个问题。我们提出了神经拓扑因子分析 (NTFA),这是一种概率因子分析模型,可以推断参与者和刺激物的嵌入。这些嵌入使我们能够将参与者和刺激物之间的差异推断为信号而不是噪声。我们根据内部试点实验的数据以及两个公开可用的数据集评估 NTFA。我们证明,与以前的拓扑方法相比,推断参与者和刺激物的表示可以提高对未见数据的预测泛化。我们还证明推断的潜在因子表示对于下游任务(例如多体素模式分析和功能连接)很有用。
最近的研究使会说话的头视频的渲染能够捕捉到高富达的头部动态。然而,对详细的身份 - 特定的微表达和自发运动进行建模,例如唇部运动和眼睛闪烁,同时在听觉和视觉信号之间实现高度同步,这一挑战是一个挑战。在本文中,我们借助于散布的音频来解决此问题。具体来说,我们首先提取将保留特定于身份信息的核心听觉组件(content,timbre,ronythm和pitch)中脱离的音频功能。然后,散布的音频嵌入与视觉嵌入一起馈入条件隐式功能,以便学习高质量的视听映射以获取细节。实验结果表明,我们的方法可以(1)成功渲染针对每个正在建模的人的个性化的详细的身份 - 特定于特定的微表达,(2)提高了音频视觉渲染结果的保真度。
摘要。知识追踪领域(KT)旨在通过分析他们的历史行为数据来了解学生如何随着时间的推移学习和掌握知识。为了实现这一目标,许多研究人员提出了使用智能辅导系统(ITS)的数据来预测学生随后的行动的KT模型。然而,随着其大规模数据集的发展,包含长期数据的大规模数据集开始出现。最近基于深度学习的KT模型在处理包含长期数据的大规模数据集时面临着低效率,低精度和低解释性的障碍。To address these is- sues and promote the sustainable development of ITS, we propose a L STM B ERT-based K nowledge T racing model for long sequence data processing, namely LBKT , which uses a BERT-based architecture with a Rasch model-based embeddings block to deal with different difficulty levels information and an LSTM block to process the sequential char- acteristic in students' actions.LBKT在ACC和AUC指标上实现了大多数基准数据集的最佳性能。
b,unipert(黑色框架面板)和ESM(灰色框架面板),在1级药理类别的蛋白质嵌入(n = 4,417)的T-SNE可视化比较(左)和类别分布(右)。颜色突出显示了前7个类别,其余少数和未分类蛋白的可视化在扩展数据中详细介绍。2。
b'靶标发现对于药物开发至关重要,尤其是对于复杂的慢性疾病。高通量技术的最新进展和生物医学数据的爆炸式增长凸显了计算药物可药性预测方法的潜力。然而,大多数当前方法依赖于基于序列的特征和机器学习,这通常面临与手工制作的特征、可重复性和可访问性相关的挑战。此外,原始序列和蛋白质结构的潜力尚未得到充分研究。在这里,我们使用深度学习技术利用蛋白质序列和结构,揭示蛋白质序列,特别是预训练的嵌入,比蛋白质结构更具信息量。接下来,我们开发了 DrugTar,这是一种高性能深度学习算法,将来自 ESM-2 预训练蛋白质语言模型的序列嵌入与蛋白质本体相结合以预测药物可药性。DrugTar 实现了曲线下面积和精确召回曲线值高于 0.90,优于最先进的方法。总之,DrugTar 简化了靶标发现,这是开发新型疗法的瓶颈。'
实体对齐 (EA) 旨在匹配不同知识图谱 (KG) 中的相同实体。基于图神经网络的实体对齐方法在欧几里得空间中取得了良好的效果。然而,KG 通常包含复杂的局部和层次结构,难以在单个空间中表示。在本文中,我们提出了一种名为 UniEA 的新方法,它统一了双空间嵌入以保留 KG 的内在结构。具体而言,我们同时学习欧几里得空间和双曲空间中的图结构嵌入,以最大化两个空间中嵌入之间的一致性。此外,我们采用对比学习来减轻由相似实体引起的错位问题,其中相似相邻实体的嵌入变得太近。在基准数据集上进行的大量实验表明,我们的方法在基于结构的 EA 方法中实现了最佳性能。我们的代码可以在https://github.com/wonderCS1213/UniEA上找到。
在NLP中,已知基于单词或子字的文本语言模型表现优于其基于字符的同行。然而,在语音社区中,口语LMS的标准输入为20ms或40毫米的离散单元(比音素短)。从基于文字的LM中汲取灵感,我们基于单词大小连续值的音频嵌入来引入生成性口语模型(GSLM),该模型可以产生多样化和表现力的语言。这是通过用词汇嵌入函数代替词汇类型的查找,通过对比度损失的横熵损失以及k-nn Sampling的多项式采样。最终的模型是基于单词大小连续嵌入的第一个属性语言模型。其性能与自动指标和主观人类判断衡量的发电质量的离散单位GSLM相当。此外,由于其200ms的大型单元,它的内存效率高五倍。此外,词汇嵌入器之前和之后的嵌入在含明确和语义上是可解释的。1
大型语言模型(LLM)的最新进展引起了人们的关注,因为在大规模数据集中鉴定的学识渊博的嵌入者在各种下游应用程序中表现出强大的ABIL。ever llms学到的知识是否可以转移到未知的临床心脏病学上。在这项工作中,我们的目标是通过将LLM的知识转移到临床心电图(ECG)(ECG)来弥合这一差距。为了解决这个问题,我们提出了一种用于心血管疾病诊断和自动ECG诊断报告生成的方法。我们还通过最佳运输(OT)引入了额外的损失函数,以使ECG和语言嵌入之间的分布对齐。在下游任务上评估了学习的嵌入:(1)自动ECG诊断报告的生成,以及(2)零射的疾病疾病检测。我们的方法能够生成高质量的心脏诊断报告,甚至与监督基线相比,甚至还可以达到竞争性的零射击分类性能,这证明了将知识从LLMS转移到心脏领域的可行性。
摘要:无人机因其大小和工作量各不相同而广泛用于各种应用,例如监视、导航、在自主农业系统中喷洒农药、各种军事服务等。然而,携带有害物体的恶意无人机经常被用来侵入禁区并袭击关键公共场所。因此,及时发现恶意无人机可以防止潜在的危害。本文提出了一种基于视觉变换器 (ViT) 的框架来区分无人机和恶意无人机。在提出的基于 ViT 的模型中,无人机图像被分割成固定大小的块;然后,应用线性嵌入和位置嵌入,最终将得到的向量序列输入到标准 ViT 编码器。在分类过程中,使用与序列相关的额外可学习分类标记。将提出的框架与几个手工制作的深度卷积神经网络 (D-CNN) 进行了比较,结果表明,提出的模型的准确率达到了 98.3%,优于各种手工制作的和 D-CNN 模型。此外,通过将所提出的模型与现有的最先进的无人机检测方法进行比较,证明了所提出的模型的优越性。