摘要 - 本文使用3D深度自动编码器和大型视觉语言模型(LVLM)介绍了一种新方法,以弥合视频数据和多模式模型之间的差距,以进行视频异常检测。该研究探讨了先前架构的局限性,尤其是在遇到分布外实例时缺乏专业知识。通过在同一管道中集成自动编码器和LVLM,该方法可以预测异常的存在并提供详细的解释。此外,这可以通过采用二进制分类并自动提示新查询来实现。测试表明,系统的推论能力为工业模型的缺点提供了有希望的解决方案。但是,缺乏用于异常检测的高质量指导遵循视频数据需要一种弱监督的方法。公认的LLM领域的当前局限性,例如物体幻觉和低物理学感知,突出了需要进一步研究以改善视频异常检测域的模型设计和数据质量。
摘要:在不同投影场景下,气候模拟的时空分辨率的复杂性产生了多种气候模式。本文通过一种无监督的深度学习技术提出了一种新的数据驱动的气候分类工作,该技术可以在尺寸上降低大量时空数值气候投影数据中的大量紧凑表示。我们旨在确定捕获多个气候变量的不同区域以及在不同气候变化方案下的未来变化。我们的方法利用卷积自动编码器与K-均值聚类(标准自动编码器)和在线聚类相结合,基于sindhorn - Knopp算法(群集自动编码器),整个Conterminous美国(CONUS)(CONUS)(CONUS)捕获来自数据驱动的气候型号的独特气候式的goldement offeration Androm intery Demplyicals todlement todlement todlemant througation dynerical offer -Gromys toym intery dynerical demancortial dynerical ofderational dynerical officolt offer。 (GFDL-ESM2G)。开发的方法在多个变暖方案下以0.125 8的0.125 8将70年的GFDL-ESM2G仿真压缩为较低维空间的空间分辨率为660000倍,然后在150年的GFDL-ESM2G仿真数据中测试了150年。结果表明,五个气候群体捕获了与人类专家定义的已知气候类别相匹配的物理合理和空间稳定的气候效果。结果还表明,与使用标准自动编码器相比,使用群集自动编码器可以将聚类的计算时间限制为9.2倍。我们五个独特的气候模式是由深度学习引起的 - 基于较低维空间的聚类,从而使我们能够在整个综合美国立即提供有关水力气学及其空间异质性的见解,而无需下载大量的大气候数据集。
抗干扰措施 使用高度复杂的微电子器件需要始终实施抗干扰和布线概念。结构越紧凑,对现代机器的性能要求越高,这一点就越重要。以下安装说明和建议适用于“正常工业环境”。对于所有干扰环境,没有理想的解决方案。当采取以下措施时,编码器应处于完美的工作状态:• 在串行线的开始和结束处(例如,控制和最后一个编码器)用 120 电阻器(接收/发送和接收/发送之间)终止串行线。• 编码器的布线应远离可能造成干扰的电源线。
脑电图 (EEG) 是一种非侵入性工具,通过将电极放置在人体头皮上来测量大脑活动,从而检测神经元放电电压。虽然 EEG 技术存在信噪比差和仅捕获表面大脑活动等局限性,但它仍然是诊断癫痫和睡眠障碍等疾病的可靠方法 [ 1 ]。自动编码器 [ 2 ] 是一类特殊的神经网络,用作编码器-解码器对。编码器通过逐步减少各层的神经元数量,最终达到瓶颈层,将输入数据压缩为压缩表示,称为潜在空间。相反,解码器通过逐渐增加后续层中的神经元数量从这种压缩形式重建输入数据。这种压缩和重建过程使网络能够有效地捕获输入数据的显着特征。卷积变分自动编码器 (CVAE) [ 3 , 4 ] 通过合并卷积层扩展了此框架,使其特别适合处理图像数据。与标准自动编码器不同,CVAE 生成概率潜在空间。这种概率方法有助于学习稳健的特征,并增强模型生成类似于训练数据的新数据实例的能力。利用卷积层,CVAE 可以利用数据中的空间层次结构,从而增强其分析和重建图像数据中固有的复杂模式和纹理的能力。因此,CVAE 在要求详细
摘要 - 常规体内神经信号处理涉及从神经元合奏中记录的信号内提取尖峰活动,并且仅在足够的间隔上传输尖峰。但是,对于使用连续的局部场势(LFP)进行认知解码的脑部计算机界面(BCI)应用,将传输到计算机的神经数据的体积施加了相对较高的数据速率要求。对于使用具有数百或数千电极的高密度内部记录的BCI尤其如此。本文介绍了第一个基于自动编码器的压缩数字电路,用于LFP神经信号的有效传输。实施了各种拟南芥和架构级优化,以显着降低设计In In Vivo压缩电路的计算复杂性和内存需求。该电路采用基于自动编码器的神经网络,提供了强大的信号重建。体内压缩逻辑的应用特异性集成电路(ASIC)占据了最小的硅区域,并且在报告的最先进的压缩ASIC中消耗了最低功率。此外,它提供了更高的压缩率和较高的信噪比和失真率。
本论文由 ARROW@TU Dublin 计算机科学学院免费开放供您阅读。该论文已被 ARROW@TU Dublin 授权管理员接受并纳入论文。如需更多信息,请联系 arrow.admin@tudublin.ie、aisling.coyne@tudublin.ie、vera.kilshaw@tudublin.ie。
摘要 抗菌素耐药性 (AMR) 对人类健康构成重大威胁。尽管已经开发出疫苗来对抗 AMR,但将特定疫苗抗原与 AMR 关联起来却极具挑战性。细菌质粒在 AMR 的传播中起着至关重要的作用。我们最近的研究发现了一组细菌质粒(具体来说,IncHI 质粒),它们编码含有细菌免疫球蛋白样结构域的大分子量蛋白质。这些蛋白质位于细菌细胞的外表面,例如鞭毛或接合菌毛中。在这项研究中,我们表明这些蛋白质具有抗原性,可以保护小鼠免受携带其中一种质粒的 AMR 沙门氏菌菌株引起的感染。此外,我们成功生成了针对这些蛋白质的纳米抗体,这些纳米抗体被证明可以干扰 IncHI 质粒的接合转移。考虑到这些蛋白质也编码在其他质粒组中,例如 IncA/C 和 IncP2,针对它们可能是对抗由携带不同组 AMR 质粒的细菌引起的 AMR 感染的有效策略。由于选定的抗原与 AMR 本身直接相关,因此保护作用不仅限于特定微生物,还包括所有携带相应抗性质粒的微生物。
癌症治疗已成为当今世界上最大的挑战之一。使用不同的治疗方法针对癌症;基于药物的治疗结果显示出更好的结果。另一方面,为癌症设计新药是昂贵且耗时的。已经建议使用一些组合方法,例如机器学习和深度学习,以使用药物重新利用来解决这些挑战。尽管有望在重新利用癌症药物和预测反应中采用经典的机器学习方法,但深度学习方法的表现更好。本研究旨在开发一种深入学习模型,该模型可以根据多摩变数据,药物描述符和药物指纹预测癌症药物反应,并根据这些反应促进对药物的重新申请。为了降低多媒体数据的维度,我们使用自动编码器。作为多任务学习模型,自动编码器已连接到MLP。我们使用三个主要数据集对模型进行了广泛的测试:GDSC,CTRP和CCLE确定其功效。在多个实验中,我们的模型总体上优于现有的最新方法。与最先进的模型相比,我们的模型达到了令人印象深刻的AUPRC为0.99。此外,在跨数据库评估中,该模型在GDSC上进行了训练并在CCLE上进行了测试,它超过了先前的三项工作的表现,达到了0.72的AUPRC。总而言之,我们提出了一个深度学习模型,以优于当前有关概括的最新技术。我们的研究强调了高级深度学习的潜力,以提高癌症治疗精度。使用此模型,我们可以评估药物反应并探索药物的重新构成,从而发现新型癌症药物。
摘要。与视觉信号相比,放置在人体四肢上的惯性测量单元(IMU)可以捕获准确的运动信号,同时对照明变化和遮挡具有鲁棒性。尽管这些角色 - 在帮助以以上为中心的行动识别方面是有价值的,但IMU的潜力仍然不足。在这项工作中,我们提出了一种新颖的动作识别方法,该方法将来自人体磨损的IMU的运动数据与以自我为中心的视频相结合。由于标记的多模式数据的稀缺性,我们设计了一种基于MAE的自我监管预处理方法,通过对视觉和运动信号之间的自然相关性进行建模,从而获得了强大的多模式表示。为了建模整个体内的多个IMU设备的复合关系,我们利用了多个IMU设备中的协作动力学,并建议将人类关节的相对运动特征置入图形结构中。实验表明我们的方法可以在多个公共数据集上实现最新性能。在更具挑战性的场景中,我们的基于MAE的预培训和基于图的IMU建模的有效性得到了进一步的验证,包括部分缺少IMU设备和视频质量损坏,从而促进现实世界中更灵活的用法。
本研究采用数据驱动的方法来研究物理系统振动,重点关注两个主要方面:使用变异自动编码器(VAE)生成物理数据(即数据“相似”与通过现实世界过程获得的使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。 VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。 然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。 针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。 这样做,VAE的能力生成保留其培训数据内在属性的数据(即) 评估身体)。 最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。使用变压器,以便使用体内稀疏传感器(观察者)中的信息在时间空间中连续预测柔性身体非平稳振动(2D时间序)。VAE经过从作者进行的实验中收集的涡旋诱导振动(VIV)数据进行训练,然后负责生成类似于实验的合成VIV数据。然后使用合成数据来训练一个变压器结构,其目标是使用稀疏观测值不断预测时间空间的振动。针对实际实验测试了变压器(从未见过实际数据),并将其性能与对实际数据训练的相同体系结构进行了比较。这样做,VAE的能力生成保留其培训数据内在属性的数据(即身体)。最终提出了变压器体系结构,LSTM和DNN的预测性能之间的比较。