比较欧几里得(左)和最佳传输(右)barycenter在两个密度之间的比较,一个是另一个的翻译和缩放版本。颜色编码插值的进展。欧几里得插值会导致两种初始密度的混合物,而最佳传输会导致进行性翻译和缩放[3]
本次演讲的目的是在黑洞蒸发的玩具模型中解释引力如何解决这个问题,并设法将半经典状态(来自较大的空间)编码到较小的微观空间中。半经典状态是内部的有效场论激发,而微观状态是黑洞微观状态。
最近,包括QCI在内的世界各地的Scien?sts已经证明了将大量信息编码到单个光子上的能力。能够密集地编码Informa?On上的光子并将其结合到很小的空间的能力,使其非常适合在Op?Cal Compu?Ng ng发动机上使用。此外,由于光子几乎不会产生热量,因此非常适合用于要求构成应用程序。例如,大规模组合使用的所有能量中,将近43%用于冷却。今天,这是一个惊人的110多瓦姆小时的电力,每年仅用于冷却数据中心。AC中的光子无热量。结果,基于光子的系统不能像电子系统那样过热。这不仅使基于光子的系统更便宜且易于操作,而且还会产生较少的“噪声”或“发行”,因为它们不是属的热量,因为它们不是属的热量。
人类 MHC 抗原被称为 HLA,因为它最初是在白细胞中描述的(人类白细胞抗原)。HLA 合成由位于人类第 6 条染色体短臂上的基因提供。这些基因中的三个 - HLA-A、HLA-B 和 HLA-C - 编码 MHC I 类蛋白。一些 HLA-D 基因座编码 II 类 MHC 蛋白(DP、DQ 和 DR)。III 基因座位于 I 和 II 基因座之间。编码补体的两个成分(C2 和 C4)的基因位于此基因座中。因此,MHC 分子主要分为两类。I 类 MHC 在所有核细胞中表达,II 类 MHC 主要在免疫活性细胞的表面表达。在整个人类群体中,没有具有相同 MHC 抗原的个体,换句话说,所有人的这些抗原都不同。但是,单卵双胞胎以及基因克隆是例外。因此,在组织移植时,需要考虑这些抗原的相容性(相对相容性)。MHC抗原是位于细胞膜上的糖蛋白。一些MHC片段与免疫球蛋白具有同源结构。
在经典计算中,位翻转错误发生的概率很小,可以使用冗余编码的思想来纠正,即将一个逻辑位编码为多个物理位,然后取逻辑位中出现次数最多的物理位来恢复逻辑位。例如,如果我们用 000 编码 0 并且发生一个错误,那么 100、010 或 001 将允许我们恢复 0。与经典纠错相比,量子纠错面临三大挑战。首先,不可克隆定理指出量子态无法复制,因此不能直接应用冗余编码。其次,任何测量都会破坏量子态的叠加。最后,除了离散的位翻转错误之外,量子态还存在连续错误,例如相移一定角度。事实上,这些挑战是可以克服的,某些错误可以通过量子纠错码 (QECC) 来纠正。QECC 定义了从 k 个逻辑量子位到 n 个物理量子位的映射。
摘要秘密共享是一种加密计划,可以编码分发给参与者的多个股票的秘密,因此只有合格的参与者才能从其股票中恢复原始秘密。当我们通过秘密共享计划编码秘密并分发股票时,有时并非所有参与者都可以访问,并且希望在确定秘密信息之前向这些参与者分配股票。众所周知,秘密共享经典秘密方案可以在给定秘密之前分发一些股票。Lie等。找到量子秘密的阈值秘密共享可以在给定秘密之前分发一些股票。但是,尚不清楚在给定秘密之前分配一些股票,而其他秘密共享的访问结构是量子秘密的。我们为量子秘密提出了一种量子秘密共享计划,可以在给定秘密之前用其他访问结构分配一些股票。关键词:量子秘密共享,提前共享,稳定器代码,EAQECC
纳米孔测序是基因组学中越来越重要的工具。尽管该领域进展迅速,但大数据量和计算瓶颈仍然是主要挑战。在这里,我们介绍了一种新的数据压缩策略 ex-zd,它有助于解决纳米孔实验期间产生的大量原始信号数据。Ex-zd 既包含无损压缩方法,其性能略优于所有当前的纳米孔信号数据压缩方法,也包含“有损”方法,可用于实现显着的额外节省。后者通过减少用于编码信号数据的位数来工作。我们表明,牛津纳米孔技术公司 (ONT) 的仪器生成的信号数据中的三个最低有效位主要编码噪声。它们的删除将文件大小减少了一半,而不会影响下游分析,包括碱基调用和 DNA 甲基化检测。Ex-zd 压缩可在单个 ONT 测序实验中节省数百 GB,从而提高纳米孔测序的可扩展性、可移植性和可访问性。
高阶拓扑动态结合了高阶相互作用,拓扑和非线性动力学,从而引起了新的新兴现象。这些现象编码的信息可以极大地改变我们对大脑和气候等复杂系统的理解,并可以允许制定受物理启发的新有效的AI算法。信用:伦敦皇后大学
扩散生成模型(DMS)在图像和图生成方面取得了有希望的结果。然而,现实世界图,例如社交网络,分子图和交通图,通常共享非欧国人拓扑和隐藏的层次结构。例如,图的度分布主要是幂律分布。当前的潜在扩散模型将层次数据嵌入到欧几里得空间中,从而导致扭曲并干扰建模分布。取而代之的是,由于其指数生长特性,已发现双曲线空间更适合捕获复杂的层次结构。In order to simulta- neously utilize the data generation capabilities of diffusion models and the ability of hyperbolic embeddings to extract la- tent hierarchical distributions, we propose a novel graph gen- eration method called, Hyperbolic Graph Diffusion Model (HGDM), which consists of an auto-encoder to encode nodes into successive hyperbolic embeddings, and a DM that oper- ates in the双曲线潜在空间。HGDM通过构造包含边缘信息的双曲线潜在节点空间来捕获Crucial图结构分布。的实验实验表明,HGDM在通用图和分子生成基准测试中获得了更好的表现,并且具有高度层次结构的图生成质量提高了48%。
与其多photon(或多粒子)对应物相比,单光子纠缠状态(通常是单粒子纠缠状态(SPE))可以提供一种更安全的编码和处理量子信息的方式。通过2D替代量子步行从最初可分离状态产生的SPE可以是3路或2向纠缠。这封信表明,可以将发电的真实三向和非本地的双向SPE用作加密密钥,以同时安全地编码两个不同的消息。我们详细介绍了消息加密解码步骤,并显示了针对屋顶滴管攻击(如拦截和归纳和中间人)的3向和基于2向SPES的加密协议的弹性。我们还使用单个光子详细介绍了这些方案的实验实现,其中三个自由度是OAM,路径和极化。我们已经证明,协议对量子通信任务具有无条件的安全性。使用常规SPE同时编码两个不同消息的能力展示了提出的加密协议的多功能性和效率。此功能可以显着改善量子通信系统的吞吐量。