Loading...
机构名称:
¥ 1.0

癌症治疗已成为当今世界上最大的挑战之一。使用不同的治疗方法针对癌症;基于药物的治疗结果显示出更好的结果。另一方面,为癌症设计新药是昂贵且耗时的。已经建议使用一些组合方法,例如机器学习和深度学习,以使用药物重新利用来解决这些挑战。尽管有望在重新利用癌症药物和预测反应中采用经典的机器学习方法,但深度学习方法的表现更好。本研究旨在开发一种深入学习模型,该模型可以根据多摩变数据,药物描述符和药物指纹预测癌症药物反应,并根据这些反应促进对药物的重新申请。为了降低多媒体数据的维度,我们使用自动编码器。作为多任务学习模型,自动编码器已连接到MLP。我们使用三个主要数据集对模型进行了广泛的测试:GDSC,CTRP和CCLE确定其功效。在多个实验中,我们的模型总体上优于现有的最新方法。与最先进的模型相比,我们的模型达到了令人印象深刻的AUPRC为0.99。此外,在跨数据库评估中,该模型在GDSC上进行了训练并在CCLE上进行了测试,它超过了先前的三项工作的表现,达到了0.72的AUPRC。总而言之,我们提出了一个深度学习模型,以优于当前有关概括的最新技术。我们的研究强调了高级深度学习的潜力,以提高癌症治疗精度。使用此模型,我们可以评估药物反应并探索药物的重新构成,从而发现新型癌症药物。

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用PDF文件第1页

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用PDF文件第2页

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用PDF文件第3页

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用PDF文件第4页

deepdra:使用多摩尼克数据集成与自动编码器进行重新利用PDF文件第5页

相关文件推荐