摘要 — 人工智能革命是由数据驱动的。人工智能“数据整理”是将不可用的数据转换为支持人工智能算法开发(训练)和部署(推理)的过程。大量的时间被投入到转换各种数据表示以支持人工智能管道中的许多查询和分析步骤。这些数据的严格数学表示使得数据转换和分析优化能够在步骤内和跨步骤进行。关联数组代数提供了一个数学基础,可以自然地描述作为数据库基础的表格结构和集合数学。同样,神经网络使用的矩阵运算和相应的推理/训练计算也可以通过关联数组很好地描述。更令人惊讶的是,可以很容易地构建一般的非规范化形式的分层格式,例如 XML 和 JSON。最后,数据透视表是最广泛使用的数据分析工具之一,它自然而然地从关联数组构造函数中出现。关联数组中的通用基础提供了互操作性保证,证明它们的操作是具有严格数学性质的线性系统,例如,结合性、交换性和分配性,这些对于重新排序优化至关重要。
主要关键词