为了比较不同尺寸系统中的闪光,应该使用密集型数量,即对系统体积不敏感的数量。通过测量分布的累积κi分裂(最高第四阶)来构建此类数量,其中i是累积的。在第二,第三和第四阶累积量密集量定义为:κ2 /κ1,κ3 /κ2和κ4 /κ2。图1显示了在150 /158 A GEV / c时净电荷的第三和第四阶累积比的系统尺寸依赖性。测量的数据与EPOS 1.99模型[4,5]预测一致。对相同数量的系统尺寸依赖性的更详细检查,用于负电荷的HADRON(图2)显示非常不同的系统尺寸依赖性。均未通过EPOS 1.99模型再现了测得的H +和H-。这种分歧表明我们不完全理解如何诱发爆发的基础物理学。因此,需要更详细的研究。在搜索CP时,可能的工具是质子插入性,该工具应遵循CP附近的幂律闪光。可以通过研究具有细胞大小的2 ND阶乘力矩f 2(m)的缩放行为,或等效地,在(p x,p y)中的质子中的细胞数量(参见参考文献。[6,7,8])。对于实验数据,必须通过混合事件减去非关键背景。减法后,第二个阶乘矩δf2(m)应根据M >> 1的幂律缩放,并导致关键
1电气系统部,FundaciónCirce(Centro deResjuctionaCiónderecursos y Intupos y comentosEnergéticos - 能源资源与消费研究中心),50018 Zaragoza,西班牙2号Zaragoza,2 Astronautical,Electrical and Energy Engineering(DIAEE),Sapienza,Sapienza,Sapienza University of Rome,ROME,ROME,ROME,ROME,00184 ROMASE,00184 ROMESO,000184 ROMESO,000184; fabio.giuliicapponi@uniroma1.it 3工程与建筑环境学院(SEBE),爱丁堡纳皮尔大学,爱丁堡EH10 5DT,英国; s.papadopoulos@napier.ac.uk 4电力电子,机器和对照组(PEMC),诺丁汉大学,诺丁汉NG7 NG7 2rd,英国; mrashed@mans.edu.eg(M.R.); prassinos@gmail.com(g.p。)5诺丁汉大学吉安省更多电动飞机技术的主要实验室,中国宁波315100; michael.galea@nottingham.edu.cn *通信:rrocca@fcirce.es;电话。: + 34-620-59-56-15或 + 39-339-476-9790†本文是我们在2020 IEEE环境与电气工程国际国际环境与电气工程会议上发表的论文的扩展版本,以及2020 IEEE工业和商业电力系统欧洲(EEEIC / IEEC / I&CPS EURECE)(EEEIC / I&CPS EURECE,MADRID,MADRID,SPAIN,SPAIN,SPAIN,SPAIN,SPAIN,SPAIN,9-12 2020; pp。1-6。
通过用可再生能源代替化石燃料(RES)是未来几十年的关键任务,以实现欧盟雄心勃勃的气候保护目标,这是一项关键任务。有关RES在电力部门可能的发展和销售性的信息对于评估未来的资金需求至关重要。但是,能源系统中RES发电的份额上涨降低了平均市场价格并提高了价格波动。平衡价格变化需要相当大的灵活性。通过电力部门和其他需求行业之间的更紧密互连,电力市场的额外灵活性使得将RES的市场价值保持在更接近一般市场价格水平的可能性,而与其股票无关。因此,这种部门耦合可以有助于成本效益向低碳能源系统的过渡。本文研究了高效部门耦合对具有雄心勃勃脱碳的欧洲能源系统中RES市场价值的影响。我们通过应用Onertile模型来分析不同的方案,该模型使用集成的成本优化方法以及由于行业耦合而引起的灵活性选项,并提供了RES的详细未来开发。在我们的分析中,我们检查了三个灵活性选项:电动汽车的智能充电,建筑物中的分散热泵以及多价地区供暖网格。我们表明,在区域供暖中,在地区供暖中使用电力的灵活使用对市场价值产生了重大影响,而柔性电动汽车充电和用热泵的柔性加热的影响很小。由于充电或加热过程的负载转移而引起的短期灵活性仅显示对市场价值的影响有限。区域供暖的燃料转换提供了改变直接响应中电力绝对需求的可能性,并大大减少了RES的缩减。
随着发展中国家生活质量的提高和全球变暖,全球对空调的需求正在迅速增加。政府间气候变化专门委员会(IPCC)估计,仅住宅空调的需求就将从 2000 年的每年 300 太瓦时 (TWh/年) 上升到 2050 年的 4000 和 2100 年的 10,000(Henley 2015)。其他估计预测,制冷需求将在 2070 年左右超过供暖需求,如图 1 所示(Isaac and van Vuuren 2009)。空调系统的能源成本可能非常高,特别是在岛屿地区,由于依赖液体化石燃料作为主要发电资源,电力成本通常很高。位于温跃层之下的深海是一个几乎无限的吸热器(冷却源),为在海边开发成本较低的区域制冷系统创造了机会。海水空调 (SWAC) 是一种区域冷却技术,利用深层冷海水进行冷却,即使在热带地区,深层冷海水的温度也可低至 3 – 5 °C (美国国家海洋和大气管理局,2018 年),如图 2 所示。人们广泛研究了海洋表面和深层海洋之间的温差,以用于发电和海水淡化目的 (Khosravi 等人,2019 年;Jung 和 Hwang,2014 年;Semmari 等人,2012 年;Odum,2000 年)。SWAC 于 1970 年代开始被考虑,并在 1990 年代初获得了发展势头。它适用于热带和赤道地区,这些地区海底水深测量允许使用相当短的冷海水引水管道 (Syed 等人,1991 年)。 SWAC 取代了传统空调系统中使用的冷却器,大大降低了电力消耗和制冷成本(Makai Ocean Engineering 2015 )。SWAC 系统的电力成本通常比传统空调系统低 80%(Van Ryzin and Leraand 1991;Van Ryzin and Leraand 1992 ),约占 SWAC 总项目成本的 20%(拉丁美洲发展银行 2015 )。这些制冷需求项目应尽可能大,目的是通过规模经济降低项目总成本
由于发展中国家和全球变暖的生活质量改善,世界对空调的需求正在迅速飙升。政府间气候变化委员会(IPCC)估计,仅对空调的需求将从2000年的每年300瓦特小时(TWH/年)上升到2050年的4000,而10,000乘2100(Henley 2015)。其他估计预测,对冷却的需求将设置为2070年左右的加热,如图1(Isaac和van Vuuren 2009)。空调系统的能源成本可能很高,尤其是在岛屿位置,由于液体化石燃料作为主要一代资源,电力成本通常很高。深海位于热跃层下方,是一个几乎无限的散热器(冷却来源),它创造了一个机会,可以开发出较低成本的海洋附近的地区冷却系统。海水空调(SWAC)是一种地区冷却技术,使用深冷海水进行冷却,即使在热带地区(国家海洋和大气管理,2018年),深度在700至2000 m之间的深度可冷来冷却3-5°C,如图。2。已经对表面和深海之间的温度差异进行了广泛的研究,以发电和淡化目的(Khosravi等人。2019; Jung and Hwang 2014; Semmari等。2012; Odum 2000)。SWAC在1970年代开始被考虑,并在1990年代初获得了动力。是针对海底胸腺胸甲允许相当短的冷海水进气管道的热带和赤道区域提出的(Syed等人1991)。 SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。 SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。 这些冷却需求项目应尽可能大,以降低规模经济的整体成本1991)。SWAC取代了常规交流系统中使用的冷却器,大大降低了电力消耗和冷却成本(Makai Ocean Engineering 2015)。SWAC系统的电力成本通常比传统的交流系统低80%(Van Ryzin和Leraand 1991; Van Ryzin和Leraand 1992),其中约占SWAC总项目成本的20%(拉丁美洲开发银行2015)。这些冷却需求项目应尽可能大,以降低规模经济的整体成本
摘要在超旧能量时在核冲突中产生的热QCD物质的特征在于,在早期平衡阶段中,在早期平衡阶段的最大强度,并与高等化的强度涡度相互作用,由大型角膜动量造成的碰撞系统诱导。 可观察到的这些现象的可观察到的痕迹是在符号和不对称重型离子碰撞以及质子诱导的反应中产生的浅黑龙和重室的定向流。 尤其是,在具有相同质量但相反的电荷的粒子之间将定向流的分裂作为速度和横向动量的函数,可访问所有碰撞阶段和不同往返系统中培养基的电磁响应。 在煤的前平衡阶段设想了电磁场的最高影响,因此早期产生的重型夸克留下了显着的烙印。 这篇综述的目的是讨论当前嵌入大小系统中电磁场的产生和放松时间的发展,及其对电荷型光和重颗粒的影响,突出了实验结果以及不同的观点方法。 由于可以对高能碰撞进行逼真的模拟,这些模拟还结合了产生的电磁场和涡度,因此对定向流的研究可以提供对早期非平衡阶段以及QGP形成和运输特性的独特见解。在超旧能量时在核冲突中产生的热QCD物质的特征在于,在早期平衡阶段中,在早期平衡阶段的最大强度,并与高等化的强度涡度相互作用,由大型角膜动量造成的碰撞系统诱导。可观察到的这些现象的可观察到的痕迹是在符号和不对称重型离子碰撞以及质子诱导的反应中产生的浅黑龙和重室的定向流。尤其是,在具有相同质量但相反的电荷的粒子之间将定向流的分裂作为速度和横向动量的函数,可访问所有碰撞阶段和不同往返系统中培养基的电磁响应。在煤的前平衡阶段设想了电磁场的最高影响,因此早期产生的重型夸克留下了显着的烙印。这篇综述的目的是讨论当前嵌入大小系统中电磁场的产生和放松时间的发展,及其对电荷型光和重颗粒的影响,突出了实验结果以及不同的观点方法。由于可以对高能碰撞进行逼真的模拟,这些模拟还结合了产生的电磁场和涡度,因此对定向流的研究可以提供对早期非平衡阶段以及QGP形成和运输特性的独特见解。
摘要:高昂的运输成本导致世界各地偏远地区的能源和食物价格昂贵,尤其是在高纬度北极气候地区。过去在这些偏远地区尝试在室内种植食物已被证明是不经济的,因为需要昂贵的进口柴油来取暖和发电。这项研究的目的是确定太阳能光伏 (PV) 电力是否可以经济地用于为与偏远北极社区微电网相结合的集装箱农场供电。混合整数线性优化模型 (FEWMORE:食品-能源-水微电网优化与可再生能源) 已被开发出来,以最大限度地降低安装太阳能光伏 (PV) 加电力存储的资本和维护成本以及从社区微电网购买电力为集装箱农场供电的运营成本。FEWMORE 通过模拟集装箱农场负载的需求侧管理,扩展了以前的模型。其结果与另一个模型(HOMER)的测试案例进行了比较。FEWMORE 确定 17kW 的太阳能光伏发电最适合为农场供电,与育空地区目前运营的集装箱农场相比,总年成本下降约 14%。适当管理特定负载可将总成本降低约 18%。因此,即使在北极气候下,太阳能光伏系统在冬季仅提供约 7% 的总负载,全年仅提供约 25% 的负载,投资太阳能光伏发电也可以降低成本。
在将量子物理应用于原子结构问题之前,我们需要将量子思想应用于一些较简单的情况,从而获得一些见解。其中一些情况可能看起来过于简单和不切实际,但它们使我们能够讨论原子量子物理的基本原理,而不必处理原子通常极其复杂的问题。此外,随着纳米技术的进步,以前只在教科书中出现的情况现在正在实验室中产生,并用于现代电子和材料科学应用。我们即将能够使用称为量子围栏和量子点的纳米级结构来创建“设计原子”,其特性可以在实验室中操纵。对于天然原子和这些人造原子,我们讨论的起点是电子的波动性。
摘要:为了应对能源转型带来的挑战,可再生能源应变得更加持续可用、可靠和具有成本效益。因此,本文介绍了一种称为基于流化的颗粒热能存储 (FP-TES) 的概念的中试工厂布局的分析和数值研究。FP-TES 是一种高度灵活的短期至长期流化床再生热存储,利用压力梯度进行热粉传输,从而实现最小损失、高能量密度、紧凑结构和逆流热交换。分散式设置中的此类设备(包括在能源密集型和特别是热密集型行业中,存储潜热或显热或电能转化为热能以最大限度地减少损失并补偿波动)可以帮助实现上述目标。本文的第一部分重点介绍通过利用计算粒子流体动力学 (CPFD) 的数值研究进行几何和流体设计。在此过程中,开发了一种称为 FP-TES 联合仿真的受控瞬态仿真方法,为测试台设计和进一步联合仿真的执行奠定了基础。在此过程中,开发了一种先进的旋转对称料斗设计,在热交换器 (HEX) 中带有附加挡板,并在内部管道中稳定颗粒质量流。此外,通过考虑料斗外层的隔热,提出了贡献体积热导率,以证明低热损失和有限的隔热需求。
摘要:在现有的建筑供暖和制冷解决方案中,区域供暖 (DH) 和区域制冷 (DC) 系统被认为是最佳选择之一,因为它们可以确保更好地控制污染物排放,并且比单个系统具有更高的效率。然而,仍需要改进以提高其可持续性和可靠性。近年来,所谓的“低温区域供暖” (LTDH) 概念被引入,旨在 (i) 通过降低 DH 网络的温度来减少分配热损失,(ii) 有利于与可再生能源的整合,以及 (iii) 为未来智能能源系统的发展创造所需的条件。然而,人们对其在现有和新系统中的实施提出了许多担忧。为此,本文旨在确定利益相关者对未来几年 LTDH 系统开发和实施障碍的排名。为此,我们设计了一份问卷,包括对当前差距和优势的分析,然后提交给 50 多位意大利和国际 DH 领域的专家。对收到的答复进行了深入分析,特别关注意大利专家的答复。报告了关于如何促进向新 LTDH 方法过渡的评论和建议。