Sugam Budhraja是新西兰奥克兰理工大学的博士生。他的背景是机器学习和软件开发。他的研究领域包括神经信息学,深度学习,自学学习和回声状态网络。Maryam Doborjeh获得了新西兰奥克兰理工大学的计算机科学博士学位。她目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的高级讲师。她的研究领域是神经信息学,尖峰神经网络,机器学习和大脑数据分析。巴尔卡兰·辛格(Balkaran Singh)是新西兰奥克兰理工大学的博士生。他的背景是计算机科学和应用统计。他的研究领域是在神经网络,持续学习,元学习和尖峰神经网络中的优化。塞缪尔·谭(Samuel Tan)是新加坡南南技术大学的博士生。他的背景是生物科学和统计。他的研究领域包括生物信息学,网络理论和邻里优化。Zohreh Doborjeh获得了博士学位。来自新西兰奥克兰技术大学的计算认知神经科学博士学位。她目前是新西兰奥克兰大学大脑研究中心的博士后研究员,也是新西兰威卡托大学心理学学院的讲师。她的研究领域是神经信息学,神经心理学,认知神经科学和人工智能。收到:2023年2月9日。埃德蒙德·莱(Edmund Lai)获得了西澳大利亚大学的电气工程博士学位。他目前是新西兰奥克兰技术大学工程,计算机和数学科学学院的信息工程学教授。他的研究兴趣是数字信号处理,计算智能,多代理动力系统和优化。亚历山大·梅尔金(Alexander Merkin)在俄罗斯的社会和法医精神病学研究中心获得了精神病学博士学位。他目前是AUT大学中风与应用神经科学研究所的研究员,也是Aut University心理治疗与咨询系讲师。他的研究兴趣包括数字心理健康,人工智能,心理学,精神病学和认知神经科学。吉米·李(Jimmy Lee)获得了新加坡国立大学的基本医学学位。他是新加坡心理健康研究所的精神科医生和临床医生,也是南约技术大学Lee Kong Chian医学院的副教授。他的研究领域是精神病学,心理药理学,精神分裂症和基于AI的健康技术。Wilson Goh获得了英国伦敦帝国学院的生物信息学和计算系统生物学博士学位。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。 他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。他目前是新加坡南南技术大学Lee Kong Chian医学院生物医学信息学助理教授。他的研究领域是复杂的系统,生物信息学,计算生物学,蛋白质组学和基因组学。尼古拉·卡萨博夫(Nikola Kasabov)获得了保加利亚索非亚技术大学的博士学位。他是新西兰奥克兰技术大学工程,计算和数学科学学院的Kedri的创始董事和知识工程教授。他在英国Ulster University,IICT保加利亚科学院和中国达利安大学担任教授职位。他的研究领域是计算智能,神经信息学,知识发现和尖峰神经网络,以及700多个出版物。修订:2023年9月18日。接受:2023年10月3日©作者2023。牛津大学出版社出版。这是根据Creative Commons归因非商业许可(https://creativecommons.org/licenses/by-nc/4.0/)发行的开放访问文章,该媒介在任何媒介中允许非商业重复使用,分发和复制,前提是原始工作被正确引用。有关商业重复使用,请联系journals.permissions@oup.com
通常,建议用户使用完整的模型集合来最好地表示模型不确定性。Sikorska-Senoner等人,为用户提供了有意义的单个集合成员的有意义的子选择。(2024)最近开发了一种新的选择程序,用于与瑞士CH2018气候场景相关的各种常见用例,例如热浪,大量降水或雪地冬季。该方法依赖于气候指数,这些气候指数是综合气候特征,例如年度炎热天数。基于其气候变化信号(CC)的强度,该过程产生了所有合奏成员的排名。从该排名中,选择并向用户(例如Impact Modellers)选择了三个代表原始模型集合的最佳估计和上限和下限的成员(图1)。
印度的农业景观正在与先进技术的整合以提高生产力和可持续性的整合经历。认识到土壤健康在农业结果中的关键作用,该研究利用先进的算法来分析和解释土壤养分数据,从而为农民提供准确,及时的建议,以供最佳施肥。该方法涉及利用最先进的传感技术收集来自各个地区的综合土壤养分信息。通过应用ML模型建立了土壤养分水平与作物性能之间的关系,其中包括回归和分类方法。本研究的目的是创建一个能够基于特定土壤特征,农作物类型和区域变化的肥料预测模型。这项研究的预期好处包括改善资源利用率,提高农作物的产量以及通过靶向肥料的靶向施用来减少环境影响。通过为农民提供针对其特定土壤条件的精确建议,这种方法旨在为印度背景下的可持续农业实践,经济效率和整体粮食安全做出贡献。本文通过引入数据驱动的决策过程来强调机器学习应用程序在革新传统农业实践中的潜力。
粘土鸽子纯粹是出于偶然的 - 在我在Washu的最后一个学期中,这是一个冲动的决定,要参加“构图研讨会”课程,看看我是否可以写自己的音乐。我在560的地下室度过了许多晚上,试图从马林巴和颤音中汲取灵感,以及我在计算机前的更多夜晚试图将脱节的段拼凑在一起。每周,我将半熟的作品带到我的克里斯托弗·史塔克(Christopher Stark)教授那里,以获得一些急需的指导。随着音乐的形状,克里斯经常注意到我在想法之间切换得太快的倾向,而不给每个人都有足够的时间发展自己的时间。我不得不更多地扩展音乐短语,让他们呼吸,然后再进入下一个。克里斯终于将此建议最终导致一个隐喻,我永远不会忘记:“将音乐视为热气球。您必须让它缓慢而轻轻地着陆。您不能只是将其从天上射出。”
如果没有DOE Wind Energy Technologies Office的支持,将不可能创建风力整合国家数据集(WIND)工具包长期集合数据集(WTK-LED)。多年来,团队特别感谢帕特里克·吉尔曼(Patrick Gilman)和布雷特·巴克(Bret Barker)的支持。Various teams and researchers across the National Renewable Energy Laboratory (NREL) contributed to the WTK-LED by either giving input in the design stage or using the data and thereby shaping the final version of the WTK-LED: Eric Lantz, Greg Brinkman, Trieu Mai, Cong Feng, Ryan King, Brandon Benton, Dmitry Duplyakin, and Zagi Zisman.,我们还感谢太平洋西北国家实验室的电网团队审查了网格整合研究的数据。我们感谢Wind Resource数据库的开发团队提供一个简单的数据查看和下载平台:Rachel Barton,Paul Edwards,Jason Ferrier,Nick Gilroy,Nick Gilroy,Amber Mohammad,Reid Olson和Paul Susmarski。
出版商已与总编辑一致。该文章被提交为客人编辑的问题的一部分。出版商的调查发现了许多文章,包括这篇文章,其中包括但不限于妥协的编辑处理和同行审查过程,不适当或不适合参考文献,或者不符合期刊或客人编辑的问题的范围。基于调查的发现,出版商与主编协商,因此不再对本文的结果和结论充满信心。
摘要:神经胶质瘤是一种快速生长的脑肿瘤,其中肿瘤的形状,大小和位置因患者而异。在放射科医生的帮助下,手动提取感兴趣的区域(肿瘤)非常困难且耗时。为了克服这一Pro -Blem,我们提出了一种完全自动化的深度学习 - 基于脑肿瘤分割的集合方法,对四个不同的3D多模式磁共振ima -ging(MRI)扫描。分割是由三个最有效的编码器 - 分解的segmen -tation及其结果通过众所周知的分割指标来测量的。然后,对模型进行了统计分析,并通过考虑使用特定MRI模式的最高Matthews相关系数来设计集合模型。本文有两个主要贡献:首先是三个模型的详细比较,第二个通过基于分割精度组合三个模型来提出集合模型。使用脑肿瘤分割(BRAT)2017数据集评估该模型,最终组合模型的F 1得分分别为0.92、0.95、0.93和0.84,分别为整个肿瘤,核心,增强肿瘤和水肿子 - 肿瘤。实验结果表明,该模型的表现优于艺术状态。
摘要 — 集成学习是一种经典的学习方法,利用一组弱学习器组成一个强学习器,旨在提高模型的准确性。最近,受大脑启发的超维计算(HDC)成为一种新兴的计算范式,已在人类活动识别、语音识别和生物医学信号分类等各个领域取得成功。HDC 模仿大脑认知,利用具有完全分布式全息表示和(伪)随机性的高维向量(例如 10000 维)。本文首次尝试在 HDC 的背景下探索集成学习,并提出了第一个集成 HDC 模型,称为 EnHDC。EnHDC 使用基于多数投票的机制协同整合多个基础 HDC 分类器的预测结果。为了增强基分类器的多样性,我们改变了基分类器之间的编码机制、维度和数据宽度设置。通过将 EnHDC 应用于广泛的应用,结果表明,EnHDC 的准确率比单个 HDC 分类器平均提高 3.2%。此外,我们还表明,具有较低维度(例如 1000 维)的 EnHDC 可以实现与具有较高维度(例如 10000 维)的基线 HDC 相似甚至更高的准确率。这使得 HDC 模型的存储需求减少了 20%,这是在低功耗计算平台上实现 HDC 的关键。
储存器计算 (RC) [1, 2] 是一种循环神经网络,近年来因其训练成本低、可通过专用电路 [3, 4] 和物理 RC [5, 6] 在硬件上实现而备受关注。RC 由储存器部分和读出部分组成,储存器部分接收时间序列输入并将其非线性转换为高维空间以表示输入的时空模式,读出部分从储存器部分拾取一些模式来分析输入并生成输出。RC 的主要优势是除读出部分之外的权重连接都是固定的。因此,与深度神经网络相比,其训练所需的数据量更少,计算成本更低。因此,RC 适用于计算资源有限且无需云计算即可执行训练的边缘 AI 系统。 RC 的读出大多由线性模型(单层感知器)实现,因此,读出的适应训练数据的能力有限。为了增强 RC 的训练能力,我们提出了一个具有多个读出的 RC 模型,该模型将一个读出的训练分散,以便每个读出可以专注于特定类型的训练数据。该方法可以看作是一种集成学习,用于增强 RC 泛化性能。简单地增加读出的数量对于边缘 AI 系统来说是低效的,因为它会消耗系统中有限的内存资源。本研究引入了一种自组织函数,它能够使用
我们提出了一种集成学习方法来预测未来美国 GDP 增长释放。我们的方法将循环神经网络 (RNN) 与考虑均值随时间变化的动态因子模型和广义自回归评分 (DFM-GAS) 相结合。该分析基于一组预测因子,涵盖以不同频率测量的广泛变量。预测练习旨在通过考虑均值变化(可能由影响经济的衰退引起)来评估集成中每个模型组成部分的预测能力。因此,我们展示了 RNN 和 DFM-GAS 的组合如何改善对 2008-09 年全球金融危机后美国 GDP 增长率的预测。我们发现神经网络集成显著降低了短期预测范围的均方根误差。