我们提出了一种集成学习方法来预测未来美国 GDP 增长释放。我们的方法将循环神经网络 (RNN) 与考虑均值随时间变化的动态因子模型和广义自回归评分 (DFM-GAS) 相结合。该分析基于一组预测因子,涵盖以不同频率测量的广泛变量。预测练习旨在通过考虑均值变化(可能由影响经济的衰退引起)来评估集成中每个模型组成部分的预测能力。因此,我们展示了 RNN 和 DFM-GAS 的组合如何改善对 2008-09 年全球金融危机后美国 GDP 增长率的预测。我们发现神经网络集成显著降低了短期预测范围的均方根误差。