摘要:嵌合现象是使用 CRISPR/Cas9 在胚胎中进行一步基因编辑的最重要限制,因为切割和修复有时会在受精卵的第一次 DNA 复制后发生。为了尽量降低嵌合现象的风险,本研究在细胞中释放 CRISPR/Cas9 后使用了可逆性 DNA 复制抑制剂。之前没有关于在猪胚胎中使用阿非迪霉素的信息,因此首先评估了不同浓度的该药物对 DNA 复制的可逆抑制和对胚胎发育的影响。用不同浓度和不同递送方法的 CRISPR/Cas9 测试了与阿非迪霉素孵育的效果。结果观察到了对 DNA 复制的可逆抑制,并且它具有浓度依赖性。确定了 0.5 µ M 的最佳浓度并将其用于后续实验。将该药物与 CRISPR/Cas9 一起使用后,观察到嵌合性减半,同时对胚胎发育产生不利影响。总之,使用可逆的 DNA 复制抑制提供了一种减少嵌合性的方法。然而,由于胚胎发育的减少,必须达到平衡才能使其使用可行。
苏打湖是具有高碱度和盐分的独特聚会环境,尽管具有极端的性质,但仍支持各种微生物群落。在这项研究中,使用Amplicon测序确定了三个苏打湖,阿比亚塔湖,Chitu湖和沙拉湖的样品中的原核和真核微生物多样性。与培养的分析显示,所有三个苏打湖中原核和真核微生物群落的多样性都比以前报道的要高。通过非依赖性的扩增子测序发现了总共3,603个原核生物和898个真核操作分类单元(OTU),而只有134个细菌Otus仅通过丰富的培养物获得3%。这表明在实验室条件下只能培养这些栖息地的微生物的一部分。在三个苏打湖中,来自奇图湖的样品显示出最高的原核多样性,而沙拉湖的样品显示出最低的多样性。Pseudomonadota ( Halomonas ), Bacillota ( Bacillus , Clostridia ), Bacteroidota ( Bacteroides ), Euryarchaeota ( Thermoplasmata , Thermococci , Methanomicrobia , Halobacter ), and Nanoarchaeota ( Woesearchaeia ) were the most common prokaryotic microbes in the three soda lakes.鉴定出高度多样性的真核生物,主要由Ascomycota和basidiomycota代表。与其他两个湖泊相比,在阿比亚塔湖(Lake Abijata)发现了更多的真核OTU。本研究表明,这些独特的栖息地具有多种微生物遗传资源,并可能在生物技术应用中使用,应通过功能性宏基因组学进一步研究。
ATOPLEX METABARCODING用户手册为MGI定制产品平台上的测序进行多个PCR扩增提供了指导。荟萃编码通常用于物种分类,丰度分析和各种生物样品的比较研究。The barcodes frequently used for biodiversity assessment include prokaryotic 16S ribosomal DNA (for bacteria and archaea), eukaryotic 18S ribosomal DNA (for diverse eukaryotes such as plants, protists, and fungi), eukaryotic ITS ribosomal DNA (for fungi), mitochondrial COI gene (for a wide range of eukaryotes including animals and生物)和线粒体12S DNA(专门针对鱼)。This user manual is only applicable to the use of the library construction products described in this document: ATOPlex 16S V3V4 rDNA Primer Pool, ATOPlex 18SV4 rDNA Primer Pool, ATOPlex ITS1 rDNA Primer Pool, ATOPlex COI mtDNA Primer Pool, ATOPlex Ac12S mtDNA Primer Pool, ATOPlex MiFish Primer Pool, and ATOPlex DNA Dual Barcode Library Preparation测序套件。
2.1 真核信使 RNA 测序 ................................................................................................ 5 2.2 转录组测序 .............................................................................................................. 5 2.3 真核小 RNA 测序 ................................................................................................ 6 2.4 真核环状 RNA 测序 ............................................................................................. 6 2.5 真核全转录组测序 ............................................................................................. 6 2.6 长读转录组测序 ............................................................................................. 6 2.7 单细胞转录组测序 ............................................................................................. 7 3. 表观遗传学测序 ............................................................................................. 8 4. 预制文库测序 ............................................................................................. 9
2.1.4。 核苷或核设备也称为染色体(图4),它在细胞质中扩散,由单个双链DNA分子组成,由于酶的作用和与组蛋白样蛋白相似,类似于Eauky蛋白的eukyotic ote eukaryotity ote eukaryotic ote eukaryotity,因此,圆形,超卷并形成多个环。 完全展开的核苷长约1.4mm,而原核细胞的大小从0.Lμm到L0µM,具体取决于物种。 与真核细胞基因不同,原始基因没有内含子(某些古细胞基因除外)。2.1.4。核苷或核设备也称为染色体(图4),它在细胞质中扩散,由单个双链DNA分子组成,由于酶的作用和与组蛋白样蛋白相似,类似于Eauky蛋白的eukyotic ote eukaryotity ote eukaryotic ote eukaryotity,因此,圆形,超卷并形成多个环。完全展开的核苷长约1.4mm,而原核细胞的大小从0.Lμm到L0µM,具体取决于物种。原始基因没有内含子(某些古细胞基因除外)。
“微生物”将非常小的思想与不断发展的生物体的思想融合在一起,是微生物学学科的统一原理。Our journal recognizes the broadly diverse yet connected nature of microorganisms and provides an advanced publishing forum for original articles from scientists involved in high-quality basic and applied research on any prokaryotic or eukaryotic microorganism, and for research on the ecology, genomics and evolution of microbial communities as well as that exploring cultured microorganisms in the laboratory.
“微生物”将非常小的思想与不断发展的生物体的思想融合在一起,是微生物学学科的统一原理。Our journal recognizes the broadly diverse yet connected nature of microorganisms and provides an advanced publishing forum for original articles from scientists involved in high-quality basic and applied research on any prokaryotic or eukaryotic microorganism, and for research on the ecology, genomics and evolution of microbial communities as well as that exploring cultured microorganisms in the laboratory.
真核细胞核的进化起源机制仍不清楚。在几种合理的假设中,最具争议的是大型 DNA 病毒(如痘病毒)导致了真核细胞核的出现。最近的几项发现,包括在原核病毒和具有类似核的内膜的原核生物中发现类似核的结构,表明基因组 DNA 不仅在真核生物中存在区室化,在原核生物中也存在区室化。人们认为,巨型病毒的复杂病毒机制类似于真核细胞核:DNA 在病毒工厂和细胞核内复制,细胞核至少部分被膜包围,没有核糖体。此外,最近发现的棘阿米巴卡氏水母病毒的几个特征表明,祖先病毒工厂和真核细胞核之间存在进化关系。值得注意的是,Ran、DNA聚合酶和组蛋白显示了病毒和宿主之间核基因横向转移的分子化石。这些结果表明病毒在真核细胞核出现过程中具有创新性。根据这些结果,提出了一种从病毒参与的角度解释真核细胞核起源的新方案。这种新方案可能会对真核生物起源的研究产生重大影响,并激发有关病毒对真核细胞核进化贡献的进一步讨论。
“微生物”将非常小的思想与不断发展的生物体的思想融合在一起,是微生物学学科的统一原理。Our journal recognizes the broadly diverse yet connected nature of microorganisms and provides an advanced publishing forum for original articles from scientists involved in high-quality basic and applied research on any prokaryotic or eukaryotic microorganism, and for research on the ecology, genomics and evolution of microbial communities as well as that exploring cultured microorganisms in the laboratory.
“微生物”将非常小的思想与不断发展的生物体的思想融合在一起,是微生物学学科的统一原理。Our journal recognizes the broadly diverse yet connected nature of microorganisms and provides an advanced publishing forum for original articles from scientists involved in high-quality basic and applied research on any prokaryotic or eukaryotic microorganism, and for research on the ecology, genomics and evolution of microbial communities as well as that exploring cultured microorganisms in the laboratory.