• Demographic predictors • Age, sex, ethnicity and race, socioeconomic status • Behavioral and Lifestyle Predictors • Sleep quality, physical activity, smoking status, medication adherence, substance use • Social and Environmental Predictors • Social support, work-related factors, environmental stressors, healthcare access • Psychological predictors • Anxiety, depression, fear-avoidance beliefs, pain catastrophizing, self-efficacy • Trait, state, evoked •患者报告的结果指标(PROS或PROMS)
这项工作旨在设计,开发和评估基于稳态视觉诱发电位(SSVEP)的BCI系统。 div>该应用程序是通过Valladolid大学生物医学工程小组创建的Medusa平台开发的。 div>为此,在Python中实现了应用程序的图形接口和信号处理方法。 div>所研究的BCI系统是一个拼写器,可让您通过在SSVEPS EEG中检测到矩阵单元中代表的命令。 div>后者是由视觉刺激在一定刺激频率下引起的。 div>在审查了最新的现状后,得出的结论是,实现这一目标的最佳方法是通过关节频率案例编码范式和规范处理方法相关性分析。 div>
摘要:基于唤起式集合的构造开发了两级旅行目的地选择的方法。这两个阶段是从意识集中的诱发集的演变。和诱发集中的目的地选择。在两个阶段都假设旅行目的地选择取决于对每种选择的态度。态度被操作为感知的抑制剂和感知的促进因子之间的差异。一种纵向方法用于在决策过程中的两个阶段收集受访者的调查数据。测试的结果表明,态度在确定是否选择一个潜在目的地作为诱发集合的一部分并选择最终目的地方面具有影响力。关键字:旅行,目的地选择,诱发设置,图像,图像,感知,实用程序。
简述:Baratham 等人研究了感觉诱发的 ECoG 反应的定位和起源。他们通过实验发现,ECoG 反应各向异性地定位在 £ ±200 μm 范围内,即单个皮质柱。生物物理详细模拟表明,与通常的想法相反,V 层和 VI 层的神经元是诱发的 ECoG 反应的主要来源。
体感皮层中的微刺激可以唤起人工触觉感知,并且可以整合到双向脑机接口 (BCI) 中,以在受伤或患病后恢复功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入患有颈脊髓损伤的人类参与者的体感皮层中的微电极阵列进行刺激,并改变刺激幅度、持续时间和频率。增加幅度和持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引起更强烈的感知,但在大多数电极上引起的感知强度会降低。电极分为三组,它们会唤起不同的感知品质,这些品质取决于刺激频率并在皮层中进行空间组织。这些结果有助于我们不断加深对体感皮层结构和功能的理解,并将促进双向 BCI 刺激策略的原则性发展。
自从发现 [1,2] 以来,EEG 已越来越多地应用于基础研究、临床研究和工业研究。针对每个领域,都陆续开发出了特定的工具。这些工具包括:(i) 利用微电极进行脑内记录 [3,4],该方法可以识别 EEG 信号的神经元来源,并更好地理解 EEG 活动的生理机制;(ii) 大平均法,包括由重复事件 (视觉、听觉、体感……) 触发的一系列试验的平均值 [5],该方法开启了诱发相关电位 (ERP) 领域的研究,最近包括 EEG 源发生器 [8–10] 在内的 EEG 动力学工具 [6,7] 丰富了这一研究领域; (iii) 将 EEG 用于神经反馈和脑机接口 (BCI) [ 11 , 12 ]。过去,这些领域及其相关工具是分开发展的,但计算资源和实验数据的日益普及推动了横向方法和方法论桥梁的发展。视觉诱发电位 (VEP) 是一种特殊的 ERP,从枕叶皮质记录的 EEG 信号中提取,可由不同类型的视觉刺激触发,从简单(如棋盘格)[ 13 ,第 14 页,15 ] 到更复杂的视觉刺激(如人脸、3D 或运动图像)[ 14 , 16 – 20 ]。VEP 是通过计算大量正在进行的 EEG 信号试验的总平均值获得的(见公式 1),从而产生精心设计且易于识别的电位,随后可用于更好地理解视觉输入的连续处理阶段。然而,这些诱发反应来自至少两种不同的机制,分别源自加法模型或振荡模型 [8, 21 – 24]。对于加法模型,诱发反应来自对感觉输入的自下而上的连续处理。这会产生特定序列的单相诱发成分峰,这些峰最初嵌入自发 EEG 背景中。后者 EEG 活动被视为噪声,并通过随后的平均排除。对于振荡模型,诱发电位可能是由于特定频带内正在进行的 EEG 节律的相位锁定所致。这种 EEG 相位重组可以通过试验间一致性 (ITC) 来测量,作为对外部刺激的反应。从根本上讲,只有当相关 EEG 功率没有同时变化(增加或减少)时,这种测量才有意义。在这种情况下,我们处于纯相位锁定状态,诱发反应仅归因于正在进行的 EEG 振荡的重组。例如,体感诱发电位的 N30 分量就是这种情况,其中 70% 的幅度归因于纯相位锁定 [ 25 ]。事实上,在大多数 ERP 研究中,会出现混合情况(功率变化和相位锁定),这使得基础和临床解释变得困难。另一个缺点是,在大多数诱发电位研究中,对一组受试者进行的是总体平均值。虽然总体平均值方法可以得到适当的统计数据[26]和关于基本或临床结果的实际结论,但它掩盖了从临床角度来看可能至关重要的个体特性。当诊断工具基于总体平均值诱发电位[27]时,这个问题尤其重要。同样,对总体平均值数据应用逆建模[10,28]可以非常有效地识别ERP发生器[19,29-31],但不利于确定个体特征。面对这些缺点,
摘要 体感皮层的微刺激可引发人工触觉感知,并可纳入双向脑机接口 (BCI) 以恢复受伤或患病后的功能。然而,人们对刺激参数本身如何影响感知知之甚少。在这里,我们通过植入两名颈脊髓损伤人类参与者体感皮层的微电极阵列进行刺激,并改变刺激幅度、频率和刺激序列持续时间。增加幅度和刺激序列持续时间会增加所有测试电极上的感知强度。令人惊讶的是,我们发现增加频率会在某些电极上引发更强烈的感知,但在其他电极上引发的感知强度较低。这些不同的频率-强度关系分为三组,它们在不同的刺激频率下也会引起不同的感知质量。相邻的电极位置更有可能属于同一组。这些结果支持了刺激频率直接控制触觉感知的想法,并且这些不同的感知可能与体感皮层的组织有关,这将有助于双向 BCI 刺激策略的原则性发展。
摘要:与传统的生物特征识别方法相比,由于其独特的特性,大脑生物识别技术引起了科学界的越来越多的关注。许多研究表明,脑电图特征在个人之间是不同的。在这项研究中,我们通过考虑特定频率的视觉刺激引起的大脑反应的空间模式提出了一种新的方法。更具体地说,我们建议,用于识别个体,将常见的空间模式与专门的深度学习神经网络相结合。采用常见的空间模式使我们能够设计个性化的空间过滤器。此外,在深层神经网络的帮助下,空间模式被映射到新的(深)表示中,在这些表示中,以高正确的识别率进行了个人之间的歧视。我们在两个稳态视觉诱发的潜在数据集上进行了全面比较,分别由三十五和11受试者组成的两个稳态视觉诱发的潜在数据集进行了全面比较。此外,我们的分析包括稳态视觉诱发的潜在实验中的大量闪烁频率。对这两个稳态视觉诱发潜在数据集进行的实验显示了我们方法在人识别和可用性方面的有用性。所提出的方法在大量的视觉刺激频率上实现了99%的平均正确识别率。
耳石复位疗法 ................................................................................................................ 86 定量脑电图 (QEEG) ...................................................................................................... 88 神经反馈 .............................................................................................................................. 91 音频脑波训练 (ABWE) ...................................................................................................... 94 视觉治疗 ...................................................................................................................... 97 超声波治疗 ...................................................................................................................... 99 虚拟现实神经修复 ...................................................................................................... 101 脑机接口认知刺激 (BCI-CS) ...................................................................................... 104 脑动态思维调节 / 催眠治疗 ............................................................................................. 107 脑电波治疗 ............................................................................................................. 110 神经肌肉贴 (NMT) ............................................................................................................. 115 腕关节神经肌肉贴 (NMT) ............................................................................................. 118 腕关节神经肌肉贴 (NMT)隧道综合症 ................................................................ 122 神经肌肉贴扎 (NMT) 垫坐骨神经痛 .................................................................. 126 神经肌肉贴扎 (NMT) 垫 足底筋膜炎 .................................................................. 129 神经肌肉贴扎 (NMT) 垫 膝关节病 .................................................................. 132 经颅直流电刺激 (tDCS)/经颅交流电刺激(tACS) / 经颅随机噪声刺激 (tRNS) ................................................... 135 重复经颅磁刺激 (rTMS) ................................................................................... 138 干针治疗 .................................................................................................................... 141 干细胞 / Sel Punca ........................................................................................................ 143 Terapi Restoratif Botoks terhadap Spastisitas .................................................................................. 146 Injeksi Toksin 肉毒杆菌 Untuk Distonia Fokal ................................................................................ 148 Bedah Stimulasi Otak Dalam(深部脑刺激).................................................................. 153 Kecepatan Hantar Saraf (KHS) .................................................................................. 157 Pemeriksaan F 波 .......................................................................................................... 172 肌电图 (EMG) ............................................................................................................. 175 瞬目反射 ( 眨眼反射 ) ................................................................................................ 178 重复神经刺激 (RNS) ............................................................................................................. 180 单纤维肌电图 ............................................................................................................................. 182 皮肤交感神经反应 (SSR) ............................................................................................................. 183 心率变异性 (RR 间隔 ) ............................................................................................................. 186 体感诱发电位 (SSEP) ............................................................................................................. 189 运动诱发电位 (MEP) ............................................................................................................. 191 视觉诱发电位 (VEP) ............................................................................................................. 195 脑干听觉诱发电位 (BAEP) ............................................................................................................. 197 P300 ............................................................................................................................. 199术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) .............................................................................................................. 213 多次睡眠潜伏期测试 (MSLT) .............................................................................................. 216................................ 197 P300 ................................................................................................................................ 199 术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) ................................................................................................................ 213 多次睡眠潜伏期测试 (MSLT) ................................................................................................ 216................................ 197 P300 ................................................................................................................................ 199 术中神经生理监测 (IONM) ...................................................................................... 202 多重睡眠图 (PSG) ................................................................................................................ 213 多次睡眠潜伏期测试 (MSLT) ................................................................................................ 216