溶液核磁共振(NMR)光谱是一种强大的技术,用于分析原子分辨率下大分子的三维结构和动力学。最近的进步利用了NMR在交换系统中的独特特性,以检测,表征和可视化激发的生物大分子及其复合物的稀疏人口稠密的状态,这些状态仅是短暂的。这些状态对常规生物物理技术看不见,并且在许多过程中起着关键作用,包括分子识别,蛋白质折叠,酶催化,组装和原纤维形成。所有的NMR技术都利用稀疏人群的NMR不可或缺的NMR可视和高度填充的NMR可见状态之间的交换,以将磁化特性从无形状态传递到可见的状态,在该状态下可以轻松检测和量化。有三类的NMR实验依赖于NMR可见和可视化物种之间距离,化学移位或横向松弛(分子质量)的差异。在这里,我说明了这些方法在亨廷顿基因的Exon-1编码的N末端区域的核核前核酸前寡核酸的复杂机制,在此中,CAG扩展了CAG的扩展,导致亨廷顿氏病,导致亨廷顿疾病,是一种致命的自身植物神经变性。我还讨论了四聚体的抑制如何阻止纤维形成的较慢(许多数量级)过程。
重要信息——最常用的服务 尊敬的 EquiShare 信用合作社会员: 我们对 EquiShare 信用合作社和 Quantum 信用合作社即将于 2022 年 3 月 1 日进行的系统合并感到非常兴奋!随着该日期的临近,我们希望确保向您提供有关您每天使用的最受欢迎的产品和服务的重要信息,以及您在系统合并期间和之后可以期待什么。 在 2022 年 3 月 1 日系统转换后,请前往我们的任何一家分店,Quantum 信用合作社团队成员将很乐意为您解答任何问题或设置任何新产品和服务。 借记卡和 ATM 卡 您将从 2022 年 2 月 22 日那一周开始收到新的 Quantum 信用合作社借记卡或 ATM 卡。按照卡邮件中的说明激活卡。您可以在卡激活过程中选择自定义 PIN。您可以在 2022 年 3 月 1 日开始使用新的 Quantum Credit Union 借记卡或 ATM 卡。此后,您的 EquiShare Credit Union 借记卡或 ATM 卡将不再使用。如果您当前的 EquiShare Credit Union 借记卡用于支付定期、定期服务(例如保险、水电费等),您需要向这些商家提供新卡信息,以确保您的服务不会中断。网上银行和手机银行——从 2022 年 3 月 1 日开始注册 Quantum Credit Union 通过网上银行和手机银行全天候提供您账户的访问权限。通过用户友好的设计,您可以管理您的账户、转账、进行移动存款、支付账单、查看和下载电子对账单、注册电子提醒,这样您就不会错过重要的交易或余额通知,将敏感文件存储在安全的虚拟保险库中,等等。要注册,请使用您当前的帐号和 SSN 的后四位数字来获取访问权限。然后,系统会要求您完成三个安全问题。成功完成此过程后,您可以更改用户名和密码。请在您的智能手机上搜索“Quantum Credit Union”下载移动银行应用程序。扫描此信背面的二维码以了解如何开始使用。此外,在 2022 年 3 月 1 日之后,您可以访问我们的任何一家分店,Quantum Credit Union 团队成员将很乐意帮助您进行设置。账单支付——从 2022 年 3 月 1 日开始注册
弯曲振动自由度的研究得益于其二维特性和两个明确的物理极限——线性和弯曲配置——以及中间配置——准线性物种,其特点是大振幅运动,使其具有丰富的光谱特征[1]。正或非单调的非谐性,后者与非刚性分子的 Birge-Sponer 图中 Dixon 凹陷的出现有关[2],以及由于跨越线性壁垒附近的状态波函数中线性和弯曲特征的混合而导致的异常旋转光谱[3,4],是准线性物种光谱中最显著的光谱特征。光谱方法的重大进步和发展使得人们能够通过实验获得多种分子物种的高弯曲泛音。通过这种方式,我们有可能获得实验光谱信息,从而研究能量接近线性势垒的系统 [5,6]。水 [7] 和 NCNCS [8–10] 的研究结果具有特别重要的意义。近年来,量子单值化概念最初由 Cushman 和 Duistermaat [11] 提出,后由 Child [12] 重新研究,对系统中的状态分配有很大帮助。由于状态与线性势垒的接近性,波函数的复杂性妨碍了正确的状态标记 [5–8,13]。这是从经典力学中借用的概念,它依赖于拓扑奇点,当系统能量大到足以探测局部鞍点或最大值时,就会发生拓扑奇点,从而阻止定义全局作用角变量 [14]。非刚性分子弯曲振动的理论建模需要特殊的工具,因为大振幅振动自由度会强烈耦合振动和转动自由度。Hougen-Bunker-Johns 弯曲哈密顿量 [15] 是该领域的一项开创性工作。这项工作后来扩展到半刚性弯曲哈密顿量 [16] 和一般半刚性弯曲哈密顿量 [17]。基于上述发展而产生的 MORBID 模型 [18] 目前是分析非刚性分子光谱的标准方法,其中需要同时考虑转动和振动自由度,以便建模实验项值并分配量子标签。代数方法,尤其是振动子模型,是分子光谱建模的传统积分微分方法的替代方法。该模型基于对称性考虑,并严重依赖于李代数的性质[ 19 ]。振子模型 (VM) 属于一类模型,该类模型将 U(n+1) 代数指定为 n 维问题的动力学或谱生成代数 [20]。类似的模型已成功应用于强子结构 [21,22] 和原子核 [23–25] 的建模。在 Iachello 引入的原始振子模型形式中,双原子分子种类的回旋振动激发被视为集体玻色子激发 [26],由于相关自由度的矢量性质,动力学代数为 U(3+1)=U(4) [25,27]。弯曲振动的二维性质以及简化振子模型形式以有效处理多原子系统的需要,自然而然地导致了二维极限振子模型(2DVM)的制定[28,29]。2DVM 定义的形式能够模拟弯曲自由度的线性和弯曲极限情况,以及表征中间情况的大振幅模式[30-33]。本研究中使用的代数哈密顿量的四体算符的扩展已于最近发表[34]。2DVM 还用于耦合弯曲器[28,35-37]、拉伸弯曲相互作用[38-41]和异构化反应中的过渡态[42]的建模。
由于其两维的性质以及存在两个良好的物理极限 - 线性和弯曲的配置,以及中间性构造 - 质中性物种 - 质膜(Quasilinear)物种 - 由大峰值运动使其富有谱图,因此,的研究已被促进了自由度的研究。 Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。 光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。 以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。 水[7]和NCNC [8-10]获得的结果特别相关。 最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。 这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。的研究已被促进了自由度的研究。Positive or non-monotonous anaharmonicities, the latter associated with the occurrence of the Dixon dip in the Birge-Sponer plot for nonrigid molecules [2], and anomalous ro- tational spectra due to the mixing of linear and bent characters in the wave functions of states straddling in the propinquity of the barrier to linearity [3, 4] are the most salient spectroscopic features可以在准线性物种的光谱中找到。光谱法的显着进步和发展使得一些分子物种的高弯曲泛音的实验访问可能。以这种方式,有可能访问实验光谱信息,从而可以在线性屏障周围研究系统[5,6]。水[7]和NCNC [8-10]获得的结果特别相关。最近,Cushman和Duistermaat [11]最初引入的量子单片概念并由Child [12]重新审视,这在波浪函数复杂性的系统中的分配大大帮助了状态,这是由于国家邻近的障碍与线性的障碍,妨碍了状态性的状态,妨碍了一个状态标记[5-8,13]。这一领域的开创性作品是Hougen-Bunker-Johns Bender Hamiltonian [15]。这是一个从经典力学借来的概念,一旦系统能量足够大以探测局部鞍点或最大值,以防止定义全球动作角变量的定义[14]。非矛盾分子物种中弯曲振动的理论建模需要特殊工具,因为较大的振幅振动自由度强烈地伴随着自由度和旋转的自由度。这项工作后来扩展到了半irigid bender hamiltonian [16]和一般的semirigid bender hamiltonian [17]。基于上述开发的模型[18]目前是分析非矛盾分子光谱的标准方法,其中同时考虑了旋转和振动自由度的同时考虑实验术语值的建模和量子标签的分配所需。代数方法,尤其是Vibron模型是传统的分子模型的传统内部差异方法的替代方法。该模型基于对称考虑因素,并在很大程度上依赖于Lie代数的特性[19]。Vibron模型(VM)属于一个模型家族,该模型分配了U(n + 1)代数为n维问题的动力学或频谱生成代数[20]。类似的模型已成功地应用于哈德子[21,22]和核[23-25]的结构的建模。2DVM定义了一种形式主义,该形式主义能够建模弯曲程度的线性和弯曲限制案例,以及表征中间情况的大幅度模式[30-33]。在原始的Vibron模型形式主义中,由Iachello引入,双子型分子物种的反振动激发被视为集体骨气兴奋[26],并且动态代数为u(3+1)= u(4),由于自由度的相关程度[25,25,27]。弯曲振动的二维性质以及简化Vibron模型形式主义以有效地处理多原子系统的需求,自然而然地驱动着vibron模型(2DVM)的二维极限的制定[28,29]。最近发表了在本工作中使用的代数哈密顿量的四体操作员的扩展[34]。2DVM也已用于耦合弯曲器的建模[28,35-37],拉伸弯曲中的相互作用[38-41]和异构反应中的过渡态[42]。
处理发票是业务运营的基本和关键组成部分。但这很繁琐。每个供应商都有自己的怪癖,每张发票都有自己的命名法——一家公司的“付款期限 15 天”是另一家公司的“两周内到期付款”。即使发票每个月都来自同一个供应商,采购代理也会发生变化,格式也会有所不同,而且会出现拼写错误。当然,发票只是文档冰山一角。每天,在每个公司,在管理和运营的每个级别,员工都需要从合同、租约、税务表格、调查和其他文件中提取详细信息。好消息?人工智能 (AI) 提供了更有效地执行这些复杂、集成任务的方法。这些解决方案无缝且可扩展,操作简单,易于管理。使用各种创新的人工智能技术,组织可以更快地处理文档并简化操作程序;错误越少,更正和撤回就越少。最近
EnergyAustralia 今天宣布,其为新南威尔士州利斯戈的派珀山发电站供水的莱尔湖大坝可能成为新的抽水蓄能设施的所在地。能源执行官利兹·韦斯科特表示,初步估计表明,莱尔湖抽水蓄能设施将能够生产 350 兆瓦的电力,储能时间约为 8 小时,足以在高峰需求期间为超过 150,000 户家庭供电。“初步研究表明,莱尔湖抽水蓄能设施有巨大潜力成为新南威尔士州转型能源系统中的一个重要基础设施,”韦斯科特女士说。“抽水蓄能将继续在未来为家庭和企业提供可靠、实惠和更清洁的电力方面发挥重要作用。莱尔湖的优势之一是它已经位于主要输电线路附近,”她说。 “这是一项低排放技术,可以储存大量电力以便快速释放,有助于在可再生能源不可用时提供保障,并填补燃煤电厂退役后留下的巨大空白。几秒钟内即可运行的能力将确保灯一直亮着,并降低客户的能源成本。”莱尔湖将被用作下水库,上水库将位于沃克山的南侧,所有土地均归 EnergyAustralia 所有。派珀山负责人 Greg McIntyre 表示,该设施将为该地区带来可喜的经济增长,并支持利斯戈成为未来的可再生能源中心。“莱尔湖的新抽水蓄能设施将确保利斯戈在能源生产方面的遗产在未来得到很好的保存,”麦金太尔先生说。“如果该项目继续进行,我们预计在建设期间将创造数百个工作岗位,还需要一些职位来监督该设施的持续运营,”他说。 “在做出任何坚定决定之前,将进行详细评估,包括环境影响和规划审批;然而,第一步是与我们的社区协商。” EnergyAustralia 的目标是到 2050 年实现碳中和。最近的公告包括支持昆士兰州 250 兆瓦的 Kidston 抽水蓄能设施、承诺在维多利亚州建设 350 兆瓦的电池,以及新南威尔士州 300+ 兆瓦的 Tallawarra B 发电站,这将是澳大利亚首个净零排放氢气和天然气发电厂。
摘要我们使用时间分辨的红外红外振动光谱法研究了多共符型型延迟荧光(TADF)分子DABNA-1中的光物理特性与激发态详细特性之间的相关性。与密度功能理论计算相比,指纹区域的独特振动光谱与1000-1700 cm -1的模拟光谱相比,我们发现了最佳的计算条件。根据计算,我们确定了最低激发单元(s 1)和三重态(t 1)状态的激发态几何和分子轨道以及基态(s 0)。我们揭示了t 1和s 0之间电势表面的相似性抑制了非辐射衰减,并通过TADF工艺引起高荧光量子产率。
空间结构光场应用于半导体量子点会产生与均匀光束根本不同的吸收光谱。在本文中,我们使用圆柱多极展开式对不同光束的光谱进行了详细的理论讨论。对于量子点的描述,我们采用了基于包络函数近似的模型,包括库仑相互作用和价带混合。单个空间结构光束和状态混合的结合使得量子点中的所有激子态都变为光可寻址。此外,我们证明可以定制光束,以便选择性地激发单个状态,而无需光谱分离。利用这种选择性,我们提出了一种测量量子点本征态激子波函数的方法。该测量超越了电子密度测量,揭示了激子波函数的空间相位信息。这种相位信息的提取是从偏振敏感测量中已知的;然而,这里除了二维偏振自由度之外,还可以通过光束轮廓获得无限大的空间自由度。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
完整作者列表:Rodriguez-Hernandez,Beatriz;基尔梅斯国立大学、CONICET、科学技术系 Oldani、A;基尔梅斯国立大学、CONICET、科学技术系 Martinez-Mesa、Aliezer;哈瓦那大学,DynAMoS(原子和分子系统中的动态过程),物理学院;基尔梅斯国立大学、CONICET、乌干达-皮纳科技部、Llinersy;哈瓦那大学,DynAMoS(原子和分子系统中的动态过程),物理学院;基尔梅斯国立大学、CONICET、科学技术系 Tretiak,Sergei;洛斯阿拉莫斯国家实验室,理论部 Fernandez-Alberti,Sebastian;基尔梅斯国立大学、CONICET、科学技术系