为了探测靶向治疗的肿瘤的基因组谱,对组织标本和相关的血液样本进行了NGS分析,并确定了Met Exon 14跳过突变(C.3026_3028+11DEL)(图1B和1C)。未发现其他驱动基因变体。突变等位基因频率为33.87%。同样,组织样品的放大片段小于18S rRNA,与Met Exon 14跳过H569细胞系相似,进一步证实了Met Exon 14跳过的出现(图1D)。根据这些发现,患者每天两次开始用250毫克Crizotinib治疗。最值得注意的是,经过一个月的治疗后成像显示肿瘤显着减少。他的肺肿瘤的大小为1.0 cm×0.8 ccm×0.4 cm,符合recist的部分反应标准(-98%,图1E)。这持续了4个月,直到他经历了与疾病无关的死亡。
使用基因编辑技术将大型DNA片段的精确精确插入到体细胞中,以标记或修饰内源性蛋白质仍然具有挑战性。由非同源末端连接途径产生的非特异性插入/删除(Indels)使过程容易出错。此外,插入物不容易移动。在这里,我们描述了一种称为Crisp R介导的E Xon(Crispie)的方法,该方法可以使用基于CRISPR/CAS9的编辑精确,可逆地标记内源性蛋白质。crispie插入了设计器供体模块,该模块由编码内含子序列的蛋白质序列的外显子组成,并将其内含子序列置于目标基因的内含子位置。插入连接处的Indels将被剪接,而mRNA几乎没有错误。我们使用Crispie在体内在哺乳动物神经元中荧光标记内源性蛋白,并以前未能达到的效率。我们证明了此方法广泛适用,并且以后可以轻易删除插入物。Crispie允许具有高保真,效率和灵活性的蛋白质序列插入。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2020年12月3日。 https://doi.org/10.1101/2020.12.03.409417 doi:Biorxiv Preprint
表皮生长因子受体(EGFR)突变的发现极大地改变了晚期非小细胞肺癌(NSCLC)患者的临床前景。与最常见的EGFR突变(例如外显子19缺失(del19)和外显子21 L858R点突变)不同,EGFR外显子20插入突变(EGFR ex20ins)是一种罕见的EGFR突变。由于其结构特异性,其对传统的表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)表现出原发性耐药,导致患者总体生存预后不佳。近年来,针对EGFR ex20ins的新药研发不断取得进展,为该患者群体的治疗带来了新的希望。对此,我们对EGFR ex20ins的分子特征、诊断进展、治疗现状进行了系统综述。总结了相关药物研发和临床研究的最新数据,旨在为临床诊断、治疗及药物研发提供参考。
具有 SLICK 单倍型的牛具有光滑且短的毛发特征,SLICK 单倍型的主要优点之一是其在改善牛的体温调节方面发挥的作用,尤其是在炎热潮湿的气候下。导致牛出现光滑表型的致病变异主要位于催乳素受体基因的第 11 个外显子中,但应注意的是,并非在此区域发现的所有变异都会导致光滑表型(Porto-Neto 等人,Front. Genet.,9:57,2018)。尽管如此,这些单个等位基因对于 CRISPR 实验中的引导设计问题仍然至关重要,特别是那些旨在敲除或修改催乳素受体基因的实验。这些单个等位基因的鉴定有助于更全面地了解该区域的遗传变异,并可帮助研究人员为他们的实验设计更精确、更有效的引导 RNA。因此,即使不直接导致光滑表型的等位基因,在增进我们对与这一基本特征有关的潜在遗传机制的了解方面也具有重要价值。本研究旨在评估体外受精 (IVF) Bos taurus x Bos indicus 杂交牛胚胎的基因组序列,特别关注 PRLR 区域。单独收集囊胚,并使用两步孵育法用蛋白酶 K (1,5ug/uL) 裂解缓冲液进行 DNA 提取。随后,重复进行 PCR 扩增,并对 PCR 片段进行 Sanger 测序。使用 Unipro Ugene 软件进行序列分析 (Okonechnikov K., et al. Bioinformatics, 28 (8):1166-7, 2012)。共分析了 15 个样本,发现 33.3% (5/15) 的样本在位置 39099463 处出现单个突变 (C>T),导致丝氨酸被替换为终止密码子,这是之前未曾报道过的。此外,在一个位置很近的区域中发现了一对错义突变,60% 的样本在位置 39099322 处出现精氨酸被替换为亮氨酸的突变 (G>T),而所有样本在位置 39099190 处出现丝氨酸被替换为亮氨酸的突变 (C>T)。最后,在位置 39099368 处发现了一个静默突变,可能导致 60% 的样本中的胞嘧啶被胸腺嘧啶替换,在这两种情况下都会导致酪氨酸的合成。根据初步分析的结果,可以推断该区域具有较高的遗传变异潜力。因此,建议在设计旨在引入插入/缺失以促进光滑表型的向导 RNA 之前,检查杂交动物的目标基因组区域并与 Bos taurus 进行比较。总之,本研究的结果为了解牛 PRLR 区域的遗传变异提供了宝贵的见解,这可能会影响基因编辑效率。
简介:MET 外显子 14 (MET ex14) 跳跃是非小细胞肺癌 (NSCLC) 中一种罕见的致癌驱动因素,MET 酪氨酸激酶抑制剂 (TKI) 的靶向治疗最近已获批准。鉴于已发表的 MET ex14 跳跃 NSCLC 数据存在异质性,我们进行了系统的文献综述,以评估其频率、患者特征和结果。方法:2022 年 6 月 13 日,我们对报告 MET ex14 跳跃 NSCLC 患者频率、患者特征或结果的出版物和会议摘要进行了系统的文献综述。结果:我们纳入了 139 项报告频率或患者特征的研究(350,997 名患者)和 39 项报告临床结果的研究(3989 名患者)。在未经选择的 NSCLC 患者中,MET ex14 跳跃频率的中位数为 2.0%,地理差异很小。腺癌或非鳞状亚组中的中位频率为 2.4%,肉瘤样亚组中的中位频率为 12.0%,鳞状组织学中为 1.3%。MET ex14 跳跃 NSCLC 患者更有可能是老年人,具有腺癌组织学;性别或吸烟状况分布不明显。在一线治疗中,靶向治疗的中位客观缓解率为 50.7% 至 68.8%(两个值均对应于 MET TKI),免疫治疗的中位客观缓解率为 33.3%,化疗的中位客观缓解率为 23.1% 至 27.0%。结论:MET ex14 跳跃的患者更有可能具有某些特征,但不能排除任何患者亚组;因此,对所有 NSCLC 患者进行测试以确定适合 MET 抑制剂治疗的候选人至关重要。尽管没有发现与化疗或免疫治疗方案的直接比较,但 MET TKI 似乎具有更高的疗效结果。
a 荷兰莱顿大学医学中心肿瘤内科系 b 荷兰 Oncode 研究所 c 荷兰阿姆斯特丹荷兰癌症研究所胸部肿瘤科 d 荷兰阿姆斯特丹癌症研究所分子肿瘤学与免疫学系 e 荷兰阿姆斯特丹自由大学阿姆斯特丹癌症中心阿姆斯特丹大学医学中心肿瘤内科系 f 荷兰阿姆斯特丹大学医学中心放射学与核医学系 g 荷兰阿姆斯特丹哈特维希医学基金会 h 荷兰乌得勒支大学医学中心病理学系 i 荷兰阿姆斯特丹荷兰癌症研究所生物识别系 j 荷兰格罗宁根大学医学中心格罗宁根大学肺部疾病系 k 荷兰奈梅亨拉德堡德大学医学中心肿瘤内科系 l 荷兰莱顿大学医学中心肺病学系
摘要 由于针对致癌突变的靶向治疗取得了巨大成功,因此在诊断出非小细胞肺癌 (NSCLC) 后便会进行分子检测。表皮生长因子受体 (EGFR) 突变是 NSCLC 中最常见的突变,EGFR 外显子 20 插入突变 (exon20ins) 是继 EGFR 外显子 19 缺失和外显子 21 L858R 突变之后的第三大 EGFR 突变。EGFR 外显子 20ins 通常对经典 EGFR 抑制表现出耐药性。mobocertinib 和 amivantamab 两种治疗方法最近成为美国食品药品监督管理局 (FDA) 批准用于治疗铂类疗法后出现这些突变的肺癌的首批药物。围绕这两种药物的研究表明其疗效强劲,但副作用很大。另一个可靶向的驱动突变是人表皮生长因子受体 2 (HER2) 外显子 20ins,约占 NSCLC 患者的 2-3%。这种突变已在体外和临床上得到大量研究,曲妥珠单抗德鲁替康最近刚刚获得 FDA 的加速批准,这是基于 Destiny-Lung01 研究中证明的高效性。然而,与 EGFR 抑制剂类似,HER2 抑制剂在临床研究中也有毒性证据。在本文中,我们讨论了 EGFR 和 HER2 外显子 20 对多种标准治疗方案(例如铂类化疗和经典 EGFR 酪氨酸激酶抑制剂)以及免疫疗法的有限反应。我们还回顾了最近批准和即将推出的靶向治疗方案,考虑了目前正在进行的关于疗效和减少副作用的研究,以及将这些药物纳入已获批准的治疗方案的风险和益处。
摘要:非缺血性扩张型心肌病 (DCM) 是需要心脏移植的最常见疾病之一。尽管这种疾病的病因复杂,但巨型肌节蛋白 Titin 的移码突变可以解释多达 25% 的家族性 DCM 病例和 18% 的散发性 DCM 病例。许多研究表明,使用 CRISPR/Cas9 进行基因组编辑可以纠正肌节蛋白的截短突变,并为肌编辑奠定了基础。然而,这些疗法仍处于不成熟状态,只有少数研究表明它们可以有效治疗心脏疾病。本文假设,Titin (TTN) 特异性基因结构允许在广泛的位置应用肌编辑方法来重塑 TTN 变体并治疗 DCM 患者。此外,为了为开发有效的 DCM 肌编辑方法铺平道路,我们筛选并选择了 TTN 中有希望的靶位。我们从概念上探索了对称外显子的删除作为一种治疗方法,以在移码突变的情况下恢复 TTN 的阅读框架。我们确定了一组 94 个潜在的 TTN 候选外显子,我们认为这些外显子特别适合这种治疗性删除。通过这项研究,我们旨在为开发新疗法做出贡献,以有效治疗由编码具有模块化结构的蛋白质(例如 Obscurin)的基因突变引起的肌病和其他疾病。
近膜 (JX) 结构域,其中包含 PKC 磷酸化位点 (S985)、胱天蛋白酶切割位点 (D1002) 和 E3 泛素连接酶 CBL (Casitas-B 系淋巴瘤) 对接位点 (Y1003),均控制 RTK 活性的下调 (图 1a)。3–7 这种改变破坏了外显子 14 两侧的内含子剪接位点,包括内含子 13 的剪接受体位点和内含子 14 的剪接供体位点,或外显子 14 编码序列本身内的突变,都会导致外显子 14 在转录本中跳跃。这些突变中最常见的是碱基替换,其次是插入/缺失。因此,导致MET外显子14跳跃的可变剪接事件会激活MET-HGF通路,促进肿瘤细胞增殖、迁移,并阻止细胞凋亡(图1b)。