人们普遍认为,神经回路中的信息存储涉及突触处的纳米级结构变化,从而导致突触印迹的形成。然而,这一假设缺乏直接证据。为了验证这一猜想,我们结合了化学增强、成对突触前后记录的功能分析以及电子显微镜 (EM) 和冷冻断裂复制标记 (FRL) 的结构分析,研究了啮齿动物海马苔藓纤维突触,这是海马三突触回路中的关键突触。突触传递的生物物理分析表明,福斯高林诱导的化学增强分别使易释放囊泡池大小和囊泡释放概率增加了 146% 和 49%。通过 EM 和 FRL 对苔藓纤维突触进行结构分析,发现靠近质膜的囊泡数量和启动蛋白 Munc13-1 簇的数量有所增加,这表明对接囊泡和启动囊泡的数量均有所增加。此外,FRL 分析显示 Munc13-1 和 Ca V 2.1 Ca 2+ 通道之间的距离显著缩短,表明通道-囊泡耦合纳米拓扑结构发生了重构。我们的结果表明,突触前可塑性与活性区的结构重组有关。我们提出,突触囊泡释放位点的潜在纳米组织变化可能与可塑性中枢突触的学习和记忆有关。
有趣的是,由于坚固的 TPU 层可确保纤维的完整性,EAF 在 100% 应变下经过 10,000 次循环拉伸后仍能保持稳定的热绝缘性。足够的强度和灵活性使 EAF 适合编织和织成纺织品。因此,用 EAF 制成的毛衣的热导率 (26.9±1.8 mW/m·K) 远低于尼龙 (91.2±1.6 mW/m·K)、聚对苯二甲酸乙二醇酯 (98.3±1.9 mW/m·K) 和羊毛 (38.9±1.1 mW/m·K) 纺织品。在同等隔热性能的情况下,用 EAF 编织的薄毛衣厚度仅为羽绒服的五分之一左右。此外,这种 EAF 编织的薄毛衣还表现出出色的耐洗性和可染性,并且不会明显损害其保暖性,这对于扩大规模至关重要。此外,作者还使用工业剑杆织机来编织
PACS 03.67.-a, 42.50.-p 摘要 在本文中,我们探索了一种同时在光纤和大气信道上运行的混合量子通信协议。这种新协议解决了在城市环境中铺设光纤可能不切实际或成本过高的问题。通过将副载波 (SCW) 量子密钥分发 (QKD) 与相位编码相结合,我们的方法增强了量子通信系统的灵活性和可靠性。我们开发并测试了一种大气光学模块,该模块配备自动调谐系统以确保精确的光轴对准,这对于最大限度地减少湍流环境中的信号损失至关重要。实验结果表明,在各种信道长度上都有稳定的筛选密钥速率和低量子比特误码率 (QBER),证实了我们的混合协议在确保各种传输环境中的通信方面的有效性。 关键词 自由空间光学、量子通信、量子密钥分发、大气信道。致谢 IZL、MAF、DVS 和 AKK 在俄罗斯科学院喀山科学中心 FRC 政府任务的支持下完成了大气信道实验。VVC、SMK 的分析工作得到了俄罗斯科学基金会 (项目编号 24-29-00786) 的资助。 引用 Latypov IZ、Chistyakov VV、Fadeev MA、Sulimov DV、Khalturinsky AK、Kynev SM、Egorov VI 光纤和大气信道的混合量子通信协议。纳米系统:物理化学数学,2024,15 (5),654–657。
光纤维介于最常见的植入剂范围内,用于在神经系统中发光,用于光学集和红外神经刺激应用。逐渐变细的操作纤维可以提供均匀的光输送到大容量和空间分辨的照明,同时最少具有侵入性。然而,现在使用锥度用于神经应用的目前仅限于二氧化硅光纤维,其较大的年轻人的模型可能会在慢性设定中引起有害的异物反应。在这里,我们介绍了基于聚合物光纤维(POFS)的植入植入物的制造和优化。After numerically determining the optimal materials and taper geometry, we fabricated two types of POFs by thermal fiber drawing.通过化学蚀刻剂的化学蚀刻来实现锥度的制造,为此,已经测试过文献中的几种溶剂。还研究了不同参数对蚀刻过程和所获得的锥度质量的影响。在脑幻像中最终测试了产生的高质量基于锥度的植入物的大量照明体积。
这项研究工作与使用干柠檬皮粉和环氧树脂的复合纤维板的制造有关,这些树脂可用作胶合板或木材的替代品。这项研究的目的是评估这种新型复合纤维板的机械和微观结构特性。评估其吸收能量的强度和能力,对不同的标本进行了不同的测试。为了理解树脂内的形态和填充颗粒分布,还使用扫描电子显微镜(SEM)检查了制造的复合材料的显微结构。根据实验发现,复合材料的机械性能,例如硬度22.45(维克斯),拉伸强度14.7 MPa,弯曲强度27.9 MPa和冲击强度21.76 J/m 2,在胶合板方面显得有前途。此外,SEM研究表明了浪费干燥柠檬皮颗粒(DLPP)和环氧树脂之间的完美键合,从而有助于改善机械性能。
抽象的柔性磁性材料在生物医学和软机器人的应用中具有巨大的潜力,但需要机械稳定。从机械角度来看,一种非凡的材料是蜘蛛丝。最近,已经开发了在可扩展和全水的过程中生产人工蜘蛛丝纤维的方法。如果具有磁性特性,则这种仿生人造蜘蛛丝纤维将是制造磁性执行器的绝佳候选者。在这项研究中,我们引入了磁性人造蜘蛛丝纤维,其中包含涂有Meso-2,3-二甲状腺酸糖核酸的磁铁矿纳米颗粒。复合纤维可以大量生产,并采用环保湿旋转过程。即使在高浓度(高达20%w/w磁铁矿)下,纳米颗粒也均匀地分散在蛋白质基质中,并且在室温下纤维是超磁性的。此启用了纤维运动的外部磁场控制,使适合致动应用的材料。值得注意的是,与常规的基于纤维的磁执行器相比,纤维表现出优异的机械性能和致动应力。此外,本文开发的纤维可用于创建具有自我恢复形状的宏观系统,从而强调了它们在软机器人应用中的潜力。
摘要:与聚合物复合材料中合成增强相关的环境挑战,例如非生物降解性和可回收性差,需要探索各种天然材料,尤其是从废物流中,以全面或部分替代此类增强。然而,这些天然纤维还提出了挑战,例如高吸水,低热稳定性和平均机械性能。为了避免这些问题,包含一种或多种类型的自然增强的天然纤维增强杂化复合材料正在增加研究兴趣。本文介绍了对天然纤维增强杂化复合材料的评论。综述了天然和合成纤维(杂化纤维)增强的热塑性和热热器。总结了纤维的特性以及所得的复合材料和加工技术。
摘要:纳米纤维的生产已成为重要的研究领域,因为它们在生物医学,纺织品,能源和环境科学等各个领域的独特性和多种应用。静电纺丝是一种多功能且可扩展的技术,它因其能够用量身定制的特性制造纳米纤维的能力而引起了人们的关注。在各种构造聚合物中,由于其特殊的电导率,环境稳定性和易于合成性,因此出现了聚(3,4-乙基二苯乙烯)(PEDOT)(PEDOT)作为有希望的材料。基于PEDOT的纳米纤维的静电纺丝提供可调的电气和光学性能,使其适用于有机电子,储能,生物医学和可穿戴技术中的应用。This review, with its comprehensive exploration of the fabrication, properties, and applications of PEDOT nanofibers produced via electrospinning, provides a wealth of knowledge and insights into lever- aging the full potential of PEDOT nanofibers in next-generation electronic and functional devices by examining recent advancements in the synthesis, functionalization, and post-treatment methods of PEDOT nanofibers.此外,审查确定了当前的挑战,未来的方向以及潜在的策略,以解决可扩展性,可重复性,稳定性和集成到实用设备中,从而为导电纳米纤维提供了全面的资源。
在当今快节奏的数字时代,数据中心在支持基本的互联网操作(例如云计算,人工智能(AI)和机器学习(ML))中起着至关重要的作用。随着这些技术变得更加复杂和普遍,需要加快,更高效和可持续的数字基础设施的需求。在数据中心项目的早期将高级光网络技术纳入越来越重要。数据中心的互连将大约十年前转向光学技术,并且最新的数据中心需求加速有望进一步将光纤技术进一步推向系统体系结构。本文分析了高级光纤技术在美国数据中心和技术的革命性旅程中的作用。批判性地研究了现有的数据中心基础设施,以发掘挑战和机遇,并提议在数据中心使用先进的光纤技术来提高效率,安全性和可持续性,这对投资者来说是一个关键问题。该主张通过扩大和保护数据基础设施来符合美国国家的利益,从而通过创造熟练的工作机会来增强经济增长,从而促进电信领域的强大劳动力市场,并保持美国作为技术进步的领导者。