植物纤维是一类生物量资源,地球上最丰富的材料之一。作为具有优异特异性刚度和强度的植物纤维之一,bast纤维在各个工业部门的生物复合材料领域一直受到关注。这项研究是为了提供Bast纤维复合材料的全面概述。分析了五种类型的最常见的冰纤维(拉米,黄麻,肯纳夫,亚麻和大麻纤维)的特征性,化学组成和性能,并分析了它们在生物复合材料中的功能化。用途的工程技术和性能,例如火焰粘贴,吸附,增强性,可生物降解性绿色可持续性和可回收性。还讨论了Bast纤维复合材料的挑战和未来发展。审查有望为有效的工程设计提供平台数据库,但有见地的理解,并扩大了Bast纤维复合材料的范围,并为功能化的Bast纤维复合材料提供进一步的创新。
蜘蛛利用可再生成分在常温下以水为溶剂生产出自然界最坚韧的纤维,这使其在材料行业中得到复制,具有极大的吸引力。尽管如此,关于蜘蛛丝纤维的生物加工和成分仍有许多需要了解的地方。在这里,我们确定了构成蜘蛛最强的丝类型——大壶腹丝的 18 种蛋白质。单细胞 RNA 测序和空间转录组学显示,腺体的分泌上皮含有六种细胞类型。这些细胞类型局限于三个不同的腺区,可产生特定组合的丝蛋白。组织切片的图像分析显示,这三个区域的分泌物不会混合,蛋白质组学分析显示,这些分泌物在最终的纤维中形成层。使用多组学方法,我们在理解大壶腹丝腺的结构和功能以及其产生的纤维的结构和成分方面取得了重大进展。
对网络能力的不断升级的要求催化了太空层多路复用(SDM)技术的采用。随着多核光纤(MCF)制造的持续进展,基于MCF的SDM网络被定位为可行且有前途的解决方案,可在多维光学网络中实现更高的传输能力。然而,借助基于MCF的SDM网络提供的广泛网络资源带来了传统路由,调制,频谱和核心分配(RMSCA)方法的挑战,以实现适当的性能。本文提出了一种基于基于MCF的弹性光网(MCF-eons)的深钢筋学习(DRL)的RMSCA方法。在解决方案中,具有基本网络信息和碎片感知奖励函数的新型状态表示旨在指导代理学习有效的RMSCA策略。此外,我们采用了一种近端策略优化算法,该算法采用动作面膜来提高DRL代理的采样效率并加快培训过程。用两个不同的网络拓扑评估了所提出的算法的性能,其交通负荷不同,纤维具有不同数量的核心。结果证实,所提出的算法在将服务阻断概率降低约83%和51%方面优于启发式方法和最先进的基于DRL的RMSCA算法。此外,提出的算法可以应用于具有和没有核心切换功能的网络,并且具有与现实世界部署要求兼容的推理复杂性。
现代航天器和运载火箭的设计更倾向于降低系统级设计和组装的复杂性。为了在降低这些复杂性的同时保持较高的整体系统性能,使用智能材料和智能结构部件是一种众所周知的做法,目前越来越受到空间系统设计人员的关注。本文讨论了智能空间结构的概念,特别是用于航天器和运载火箭应用的嵌入光纤传感器 (OFS) 的碳纤维复合材料结构。本研究重点介绍了此类油箱的操作要求以及光纤传感器实现的智能功能。对于后者,对光纤布拉格光栅传感器 (FBG) 和基于光频域反射仪 (OFDR) 的分布式光纤传感器 (DOFS) 进行了定量比较,以说明它们的核心性能参数,例如灵敏度、传感范围、动态测量能力和空间分辨率。与传统电子传感器相比,光纤传感器在恶劣环境中的性能和可靠性提高,同时尺寸、质量和功耗降低。嵌入碳纤维结构的光纤传感器已证明其能够提供准确的实时温度测量和监测结构完整性,同时精确检测可能的破裂和故障点,如文献综述中讨论和展示的那样。光纤传感在智能推进剂储罐中的应用可能会扩展到检测流体泄漏,还可以通过温度映射提高推进剂计量的精度,并可用于地面鉴定、飞行前测试以及在轨运行、状况和结构健康监测。本文介绍了一种在复合材料压力容器中嵌入 FOS 的最佳方法,并讨论了光纤传感器的相关放置和定位方法,并结合了一个简化的单组分分析应力-应变传递模型,该模型推导出沿最大主方向(即 σ Max Principal )的应力分量。这种新方法被认为可用于在复合材料结构(例如航天器中的压力容器和轻质结构)中最佳地使用嵌入式 FOS。人们相信,简化的模型将为有效的数据解释和处理铺平道路,利用航天器上有限的计算资源。
光学微/纳米纤维(MNFS)从二氧化硅纤维中锥形锥度具有有趣的光学和机械性能。最近,具有相同几何形状的MNF阵列或MNF吸引了越来越多的关注,但是,当前的制造技术一次只能吸引一个MNF,具有低绘图速度(通常为0.1 mm/s),并且用于高级控制的复杂过程,从而使其在制造多个MNF方面无效。在这里,我们提出了一种平行制作方法,以同时绘制具有几乎相同几何形状的多个(最多20)MNF。对于大于500 nm的纤维直径,在1550 nm波长下,所有AS绘制MNF的光学透射率超过96.7%,直径偏差在5%以内。我们的结果为MNF的高产量制造铺平了一种方法,该方法可能从基于MNF的光学传感器,光学操作到纤维芯片互连。
摘要:葡萄糖是活生物体中代谢的必不可少的营养素,广泛用于食品,工业和医疗领域。葡萄糖通常会作为食物中的甜味剂添加,并且经常在工业中用作各种产品的还原剂。在医疗中,葡萄糖被添加到许多药物中是一种营养添加剂,这也表明糖尿病患者需要一直关注。因此,市场对低成本,高敏性,快速和方便的葡萄糖传感器的需求很大,并且该行业始终非常重视创建新的葡萄糖传感器设备的工作。因此,我们提出了一个SNO 2纳米纤维/AU结构多模式 - 单模 - 模式(MSM)纤维表面等离子体共振(SPR)葡萄糖传感器。SNO 2纳米纤维固定在通过静电纺丝中用AU膜镀上的单模纤维芯。当葡萄糖浓度以5 vol%的间隔增加时,相应的共振波长具有不同程度的红移。比较两种结构,随着葡萄糖浓度范围从0 vol%增加到60 vol%,灵敏度从AU结构中的228.7 nm/vol%增加到SNO 2纳米纤维/AU结构中的337.3 nm/vol%。同时,谐振波长与两个结构的折射率之间的线性相关性大于0.98。此外,SNO 2纳米纤维/AU结构可显着提高SPR传感器的实际应用性能。
摘要:海藻酸盐是一种具有良好生物相容性的天然高分子,是可持续发展和替代石油衍生物的潜在高分子材料。但纯海藻酸盐溶液不具有可纺性,阻碍了海藻酸盐应用领域的拓展。随着静电纺丝技术的不断发展,人们开始采用合成高分子如PEO、PVA等作为共纺剂,增加海藻酸盐的可纺性。而且,利用多流体静电纺丝制备的同轴、平行Janus、三元等多样、新颖的静电纺丝纤维结构,为天然高分子可纺性差的问题找到了新的突破口。同时,多样的静电纺丝纤维结构有效地实现了药物的多种释放方式。海藻酸盐与静电纺丝的强强联合,被广泛应用于组织工程、再生工程、生物支架、药物输送等多个生物医学领域,研究热度持续高涨,尤其在药物的控制输送方面。本综述对海藻酸盐进行了简要概述,介绍了静电纺丝的新进展,并重点介绍了海藻酸盐基电纺纳米纤维在实现脉冲释放、持续释放、双相释放、响应性释放和靶向释放等各种控制释放模式的研究进展。
介绍基于其起源和特征,皮肤伤口可以分为两种主要类型。首先,急性伤口来自各种情况,包括手术程序,创伤事件,辐射暴露,擦伤和浅表烧伤。另一方面,由于糖尿病性溃疡,由于固定性的长时间以及与静脉功能不全有关的静脉溃疡而导致的糖尿病性溃疡,压力性溃疡,导致慢性伤口。1这些类型之间的适当差异对于提供量身定制的护理和有效的管理策略至关重要,以最大程度地提高伤口愈合结果。为了促进细胞生长并促进有效的愈合,必须执行清创术以去除伤口中的任何碎屑或受损的组织。随后细心的清洁和擦拭
The modification of epoxy resins (EP) systems and glass fiber-reinforced epoxy composites (GFRECs) for flame retardancy applications in these industries is critical, owing to the wide range of material characteristics of these resin systems, including highly desirable mechani- cal properties, easy processing, low shrinkage during resin curing, and good adhesion to glass fibers.2加法 - 由于其允许轻巧的能力,GFREC的需求很高,以减少火车,船只或飞机的总体质量,从而提高燃油效率。3,4这项研究是对双酚A(DGEBA)的二甘油乙醚进行的,该研究因其潜在的通用应用从电气零件到航空航天行业而被选为基质。5但是,DGEBA高度易燃,因此需要使用添加剂来增强其阻燃性。6在纯树脂(NR)中的FRS的加工性存在,特别是对于基于溶剂的系统,例如含有反应性阻燃的部分7 - 9和非反应性磷酸化合物,例如9,10-10-dihydro-9-ihydro-9-oxa-10-oxa-10-磷酸磷酸化合物,尤其是针对基于溶剂的系统。10 - 12