随着量子器件制造技术的快速发展,我们现在可以操纵越来越多的纠缠量子比特。中型量子器件(10-100 量子比特)已在超导电路、囚禁离子和超冷原子平台上实现 [1-7]。量子态层析成像 (QST) 旨在通过对状态副本进行适当测量来重建未知量子态,它是验证和衡量实现优劣的黄金标准。具体而言,QST 是证明量子处理器上所有实际操作和测量所能提供的信息的完整性所必需的。量子场论的早期研究集中在混合态,发现它需要对一组最小 O(d) 个互不偏基进行射影测量[8-10],或对正算子值测度(POVM)进行 O(d2) 期望所提供的信息[11-14]。随着希尔伯特空间维数 d 随着成分(如粒子)数量的增加而呈指数增长,这很快变得不切实际。对于纯态,最近证明,就信息而言,POVM 的数量可以大幅减少到 O(d)[15-17],测量基的数量可以减少到 4 个[18-20]。然而,由于样本空间 d 的大小呈指数级增长,实现这些精心设计的非局部测量并获得相应的收敛概率分布在实验上仍然是难以实现的[21]。经过长期发展其数学基础之后,我们现在正处于考虑其实用方面的阶段。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2020 年 2 月 9 日发布。;https://doi.org/10.1101/2020.02.07.939074 doi:bioRxiv 预印本
加扰是存储在局部自由度中的信息扩散到量子系统的多体自由度的过程,从而无法被局部探测器访问,并且显然会丢失。加扰和纠缠可以调和看似不相关的行为,包括孤立量子系统的热化和黑洞中的信息丢失。在这里,我们证明保真非时序相关器 (FOTOC) 可以阐明加扰、纠缠、遍历性和量子混沌(蝴蝶效应)之间的联系。我们为典型的 Dicke 模型计算了 FOTOC,并表明它们可以测量子系统 Rényi 熵并提供有关量子热化的信息。此外,我们说明了为什么 FOTOC 可以在没有有限尺寸效应的混沌系统中实现量子和经典 Lyapunov 指数之间的简单关系。我们的研究结果为实验性使用 FOTOC 探索加扰、量子信息处理的界限以及可控量子系统中黑洞类似物的研究开辟了道路。
当设计经过了足够多次迭代周期,足以确信其符合要求时,必须将通过原型设计和评估迭代步骤学到的所有知识整合起来,以生产最终产品。尽管原型将经过广泛的用户评估,但它们不一定经过严格的质量测试,以测试其他特性,例如稳健性和无错误操作。构建一个供成千上万的人在各种平台和各种情况下使用的产品需要的测试机制与制作快速原型来回答特定问题不同。下面的困境框讨论了两种不同的开发理念。一种方法称为进化原型,涉及将原型进化为最终产品。另一种方法称为一次性原型,使用原型作为最终设计的垫脚石。在这种情况下,