认知灵活性,即根据不断变化的环境需求在任务之间进行心理切换的能力,支持最佳的生活结果,使其成为整个发展过程中需要研究的重要执行功能。在这里,我们回顾了研究认知灵活性发展的文献,重点是使用基于任务的功能性磁共振成像 (fMRI) 的研究。神经影像学文献表明,对认知灵活性很重要的关键大脑区域包括下额叶交界处和中扣带回岛叶网络内的区域,包括岛叶和背侧前扣带皮层。我们进一步讨论了研究神经发育过程中的认知灵活性的挑战,包括术语不一致、fMRI 任务范式的多样性、将认知灵活性与其他执行功能分离的困难以及解释认知策略的发展变化。未来的方向包括评估大脑网络动态的发展变化如何实现认知灵活性,并研究认知灵活性的潜在调节因素,包括身体活动和双语能力。
为了管理灵活性服务,ENEL X最先进的网络操作中心(“ NOC”)于2011年在都柏林的“硅码头”建立为我们的高级网格监控中心。它是需求响应服务的真正控制中心。这是所有能源调度都均经过行动,监控和管理的地方。通过NOC,我们运营着全球最大的灵活能源资产投资组合,以减少全球碳排放并促进我们运营的所有国家 /地区的国家电网稳定性。我们目前在18个国家 /地区管理9.4 GW*需求响应,并在全球范围内从15,000个企业网站流式传输数据。NOC管理的功率负载分布在75个以上的需求响应计划中,这些响应计划在动态和监管方面差异很大。
零碳功率系统将面临供求方面的双重不确定性;这将需要更多的系统灵活性资源,以达到功率平衡并实现更大规模的可再生能源整合。在供应方面,可再生能源产生技术,例如风力发电,太阳能光伏和水力发电,以间歇性为特征。在需求方面,随着电气化和频繁发生的极端天气事件等多种因素的影响,功率负载变得更加波动。在低碳过渡期间,对化石燃料动力的依赖(如煤炭和天然气)通常用作主要的灵活性资源,将继续下降。电力系统将需要更多的无碳灵活性资源来应对供需不确定性,并在多个时间范围内实现电力平衡:从年度到秒的管理。
在寻求2025年ESBN的15-20%灵活需求时,必须考虑热量和运输的电气化的增长,并且可以提供的灵活性量。在本文有关灵活性的咨询文件中,ESBN指出,“促进爱尔兰人民采用多达936,000辆电动汽车和60万热泵”的承诺。1电气化的增长必须视为来自国内和工业热以及运输的潜在需求灵活性来源。我们在本咨询文件中欢迎ESBN确认电气化需求灵活性潜力。“采用电加热解决方案的工业和商业业务:通过采用这项技术,它们是能够参与需求灵活性所需的仪表投资的关键之一” 2。在提供网格操作员灵活的同时,电气化的扩展具有更大的好处。它降低了关键部门的排放,使我们更接近零碳经济,通过减少和约束来提高供应和援助的安全性。
摘要:近年来,气候变化和全球变暖等环境问题促使各国增加对可再生能源的投资。随着可再生能源渗透率的提高,电力系统的间歇性也随之增加。为了平衡电力波动,需求侧灵活性是一个可行的解决方案。本文回顾了住宅、工业、商业和农业等需求部门的灵活性潜力,以促进可再生能源融入电力系统。在住宅领域,家庭能源管理系统和热泵表现出巨大的灵活性潜力。前者可以释放家用设备(例如湿电器和照明系统)的灵活性。后者将供暖系统的联合热电灵活性整合到电网中。在工业领域,对水泥制造厂、金属冶炼和炼油厂等重工业进行了调查。本文讨论了能源密集型工厂如何为能源系统提供灵活性。在商业领域,超市冰箱、酒店/餐厅和电动汽车商业停车场被指出。大型电动汽车停车场可以被视为巨大的电力储存,不仅可以为上游网络提供灵活性,还可以为当地商业部门(例如购物商店)供电。在农业领域,灌溉泵、农场太阳能站点和变频驱动水泵被视为灵活需求。还调查了畜牧农场的灵活性潜力。
摘要:近年来,气候变化和全球变暖等环境问题促使各国增加对可再生能源的投资。随着可再生能源渗透率的提高,电力系统的间歇性也随之增加。为了平衡电力波动,需求侧灵活性是一个可行的解决方案。本文回顾了住宅、工业、商业和农业等需求部门的灵活性潜力,以促进可再生能源融入电力系统。在住宅领域,家庭能源管理系统和热泵表现出巨大的灵活性潜力。前者可以释放家用设备(例如湿电器和照明系统)的灵活性。后者将供暖系统的联合热电灵活性整合到电网中。在工业领域,对水泥制造厂、金属冶炼和炼油厂等重工业进行了调查。本文讨论了能源密集型工厂如何为能源系统提供灵活性。在商业领域,超市冰箱、酒店/餐厅和电动汽车商业停车场被指出。大型电动汽车停车场可以被视为巨大的电力储存,不仅可以为上游网络提供灵活性,还可以为当地商业部门(例如购物商店)供电。在农业领域,灌溉泵、农场太阳能站点和变频驱动水泵被视为灵活需求。还调查了畜牧农场的灵活性潜力。
德国航空航天中心(DLR)、网络能源系统研究所、Curiestr。 4,70563 Stuttgart,德国 b 斯图加特能源综合系统分析研究计划 (STRise),Keplerstraße 7,70174 Stuttgart,德国 c 德国经济研究所 (DIW Berlin),Mohrenstraße 58,10117 Berlin,德国 d 能源经济研究中心 (FfE),Am Blütenanger 71,80995 München,德国 e Reiner Lemoine 研究所,Rudower Chaussee 12,12389 Berlin,德国 f 高压设备和电网、数字化和能源经济研究所 (IAEW),亚琛工业大学,Schinkelstraße 6,52056 Aachen,德国 g 电力电子与电气驱动研究所 (ISEA),亚琛工业大学,Jägerstraße 17-19,52066 Aachen,德国 h 研究所发电和存储系统 (PGS),E.ON ERC,亚琛工业大学,Mathieustraße 10, 52074 Aachen,德国 i Jülich Aachen 研究联盟,JARA-Energy,德国 j 管理科学和能源经济学 (EWL) 主席,杜伊斯堡-埃森大学,Universitätsstr. 11, 45117 Essen, 德国 k 斯图加特大学能源经济与合理能源利用研究所 (IER), Heßbrühlstraße 49a, 70565 Stuttgart, 德国 l 伍珀塔尔研究所, Döppersberg 19, 42103 Wuppertal, 德国
以及管道中的线背包还提供了与管道连接的燃气洞穴和液化天然气存储空间。英国历史上使用耗尽的气田和盐洞储存甲烷的气体储存能力很高。在2010年,GB有大约45个TWH的天然气存储,到2019年底已经降至15个TWH,这主要是由于粗糙的海上存储设施关闭(32 TWH)4。其余站点主要用于短期和中期存储,而不是季节性存储。GB和欧洲大陆之间还有几个天然气互连器,通常在冬季进口的天然气比夏季进口更多,并且允许GB从欧洲大陆的储气设施中受益,从而抵消了我们自己的天然气存储水平的降低。其他化石燃料可以存储在储罐或库存中,这通常超过上图中图所示的气体存储能量。
德国航空航天中心(DLR)、网络能源系统研究所、Curiestr。 4,70563 Stuttgart,德国 b 斯图加特能源综合系统分析研究计划 (STRise),Keplerstraße 7,70174 Stuttgart,德国 c 德国经济研究所 (DIW Berlin),Mohrenstraße 58,10117 Berlin,德国 d 能源经济研究中心 (FfE),Am Blütenanger 71,80995 München,德国 e Reiner Lemoine 研究所,Rudower Chaussee 12,12389 Berlin,德国 f 高压设备和电网、数字化和能源经济研究所 (IAEW),亚琛工业大学,Schinkelstraße 6,52056 Aachen,德国 g 电力电子与电气驱动研究所 (ISEA),亚琛工业大学,Jägerstraße 17-19,52066 Aachen,德国 h 研究所发电和存储系统 (PGS),E.ON ERC,亚琛工业大学,Mathieustraße 10, 52074 Aachen,德国 i Jülich Aachen 研究联盟,JARA-Energy,德国 j 管理科学和能源经济学 (EWL) 主席,杜伊斯堡-埃森大学,Universitätsstr. 11, 45117 Essen, 德国 k 斯图加特大学能源经济与合理能源利用研究所 (IER), Heßbrühlstraße 49a, 70565 Stuttgart, 德国 l 伍珀塔尔研究所, Döppersberg 19, 42103 Wuppertal, 德国