摘要 荧光蛋白 (FP) 标记是细胞生物学的基础方法,因为它可以观察活细胞中的蛋白质分布、动态和与其他蛋白质的相互作用。然而,使用标记蛋白过表达的典型方法可能会扰乱细胞行为并引入定位伪影。为了保持天然表达,可以将荧光蛋白直接插入内源基因中。这种方法在酵母中已经是标准做法几十年了,最近随着 CRISPR/Cas9 的出现,在无脊椎动物模型生物中也成为标准做法。然而,由于同源定向修复 (HDR) 效率低下,内源荧光蛋白标记尚未在哺乳动物细胞中广泛使用。在这里,我们描述了一种简化的方法,用于通过小鼠胚胎干细胞中的非同源末端连接 (NHEJ) 将 FP 标签高效快速地整合到天然基因座中。我们的方案最大限度地减少了使用通用供体的克隆,允许对内源蛋白进行 N 端或 C 端标记,并且从转染到成像只需不到 2 周的时间,从而提高了 FP 敲入在哺乳动物细胞中的适用性。简介荧光蛋白(FP)敲入能够实现内源性标记,从而实现蛋白质可视化,而不会产生过表达伪影1。敲入策略可以让研究人员准确观察和测量活细胞中蛋白质表达、定位和相互作用的动态。自20世纪90年代以来,FP敲入一直是酵母中的标准做法,因为这种生物可以通过同源重组有效地整合FP供体2,3。最近,由于CRISPR/Cas9技术的出现10,FP敲入已在秀丽隐杆线虫4-7和果蝇8,9中得到广泛采用。当由单向导RNA(sgRNA)编程时,Cas9会引入靶向的DNA双链断裂(DSB),细胞可以通过同源定向修复(HDR)或非同源末端连接(NHEJ)11进行修复。HDR因其高保真度而受到青睐12-15。然而,HDR 仅在某些细胞周期阶段 16 活跃,并且需要与靶标匹配的同源臂。因此,基于 HDR 的标记效率要低得多 17,18,并且需要在哺乳动物细胞中费力地克隆。为了规避这些限制,最近已引入 NHEJ 来在哺乳动物细胞中进行 FP 敲入 18–26 。一种名为 CRISPR 辅助插入标记 (CRISPaint) 22 的方法特别精简,因为它使用通用供体质粒,因此唯一需要的克隆是构建基因特异性 sgRNA。供体质粒通过转染引入细胞,与靶基因并行被 Cas9 切割,并通过 NHEJ 以非序列特异性的方式整合到靶基因中。为了允许使用任何基因特异性 sgRNA 同时保持正确的阅读框架,CRISPaint 使用通用的“框架选择器”在三种可能的阅读框架之一中切割通用供体 22 。尽管有这些优势,到目前为止,CRISPaint 仅在少数细胞系中进行了测试。此外,目前形式的 CRISPaint 系统仅可进行 C 端插入,这限制了其应用于蛋白质产物可耐受 C 端标记的基因。在这里,我们描述了一种基于 CRISPaint 的改进方法,该方法可在哺乳动物细胞中灵活、快速地在基因的任一端进行 FP 标记。我们的方法高效,需要的克隆最少,并且可以产生在天然调控元件的控制下表达的功能性内源性标记蛋白。我们在小鼠胚胎干细胞 (mESC) 中测试并优化了这种方法。我们在第一次尝试中成功标记了 5/5 个目标,从转染到成像的时间只有 2 周。此外,我们还构建了一组用于多色标记的质粒。总之,这些进展将促进 mESC 和其他哺乳动物细胞中的细胞生物学研究,并可能提供更快、更简单的快速创建敲入小鼠的途径。
©2022。此手稿版本可在CC-by-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
Hong-Ou-Mandel (HOM) 效应是一种令人着迷的量子现象,无法用经典解释。传统上,远程非线性源已用于在 HOM 分束器上实现光子的重合。在这里,我们建议可以使用位于分束器间隙上的超辐射近场耦合发射器在本地创建 HOM 干涉所需的重合发射源。我们表明,使用 HOM 光子检测可以大大增强对分束器间隙介电常数变化的灵敏度和相应的 Fisher 信息。随后,我们概述了将超辐射发射器与实际传感器系统集成的几种策略。总之,这些发现应该为广泛的近场 HOM 量子传感器和新型量子设备铺平道路。
高荧光(HF)是一种利用激子在两个发光体之间转移的相对较新的现象,需要对分子能级进行仔细的成对调整,并被认为是朝着开发新的高效OLED系统发展的关键步骤。迄今为止,据报道,几乎只有几个具有所需窄带发射但中等外部量子效率的HF黄色发射器(EQE <20%)。这是因为尚未提出一种系统的系统策略,该策略尚未提出,尚未提出作为有效激子转移的补充机制,尚未提出过Förster共振能量传递(FRET)和三重态(TTS)过渡。在此,我们提出了一种理性方法,该方法允许通过微妙的结构修改,这是由同一供体和受体亚基构建的一对化合物,但可以在这些歧义性碎片之间进行多种通信。TADF活性掺杂剂基于与甲壳唑部分相关的萘酰亚胺支架,通过引入额外的键不仅导致π-云的扩大,而且还导致刚性刚化,还会导致刚性和抑制供体的旋转。这种结构变化阻止了TADF,并允许引导带盖和激发状态能量同时追求FRET和TTS过程。使用呈现的发射器的新型OLED设备显示出极好的外部量子效率(高达27%)和最大狭窄的全宽度(40nm),这是能量水平很好的结果。提出的设计原理证明,仅需要进行较小的结构修饰才能获得HF OLED设备的商业染料。
摘要 Prime editing 是一种最近开发的基于 CRISPR/Cas9 的基因工程工具,可用于在基因组中引入短插入、删除和替换。然而,Prime edit 的编辑率通常约为 10%–30%,效率却与其多功能性不符。本文,我们介绍了 Prime editor 活性报告基因 (PEAR),这是一种灵敏的荧光工具,可用于识别具有 Prime edit 活性的单个细胞。PEAR 没有背景荧光,可特异性指示 Prime edit 事件。它的设计为整个间隔序列的序列变异提供了无限的灵活性,使其特别适合于系统地研究影响 Prime edit 活性的序列特征。使用 PEAR 作为 Prime edit 的富集标记可使编辑群体增加高达 84%,从而显著提高 Prime edit 在基础研究和生物技术应用中的适用性。
CRISPR 相关核酸酶是精确编辑模型系统(包括人类类器官)基因组的有力工具。目前描述类器官中荧光基因标记的方法依赖于 DNA 双链断裂 (DSB) 的产生,以刺激同源定向修复 (HDR) 或非同源末端连接 (NHEJ) 介导的所需敲入整合。DSB 介导的基因组编辑的一个主要缺点是需要克隆选择和扩增候选类器官以验证目标基因座的基因组完整性并确认没有脱靶插入/缺失。相比之下,基因组位点和靶向载体的同时切口,称为反式配对切口 (ITPN),可刺激有效的 HDR 介导的基因组编辑以产生大量敲入而不会引入 DSB。在这里,我们表明 ITPN 可以在人类正常和癌症类器官中实现快速、高效且无插入/缺失的荧光基因标记。为了突出 ITPN 的简便性和效率,我们生成了三重荧光敲入类器官,其中 3 个基因组位点在单轮靶向中同时被修改。此外,我们通过一步差异化修改母系和父系等位基因,生成了具有等位基因特异性读数的模型系统。ITPN 使用我们的靶向载体调色板(可从 Addgene 公开获得),非常适合在人类类器官中生成无错误的杂合敲入。
同时为定向进化更亮的变体提供了新模板。荧光蛋白的亮度被定义为它们的摩尔消光系数与量子产率的乘积,它们分别是它们的发色团吸收光的能力和将吸收光转换成发射光的效率。虽然增加这两个性质中的任何一个都会成比例地增加亮度,但是人们还不太了解 RFP 结构的变化如何有益地影响它们的消光系数,这使得通过合理设计预测有益突变变得复杂。另一方面,已知荧光团的量子产率与它们的构象灵活性直接相关,8 – 10 因为运动会将吸收的能量以热量而不是光子的形式耗散。对于荧光蛋白,研究表明,通过亚甲基桥的扭转,发色团对羟基苯亚甲基部分的扭曲会导致非辐射衰减。10,11 因此,应该可以通过设计突变来限制对羟基苯亚甲基部分的构象灵活性,从而提高 RFP 亮度,从而提高量子产率。在这里,我们使用 Triad 软件 12 进行计算蛋白质设计,以优化暗淡单体 RFP mRojoA(量子产率 = 0.02)中发色团口袋的包装,我们假设这会使发色团变硬,从而提高量子产率。为此,对发色团对羟基苯亚甲基部分周围的残基进行了突变
神经递质多巴胺是从称为静脉曲张的离散轴突结构中释放出来的。它的释放在行为中至关重要,并且与普遍的神经精神疾病有关。现有的多巴胺检测方法无法检测和区分离散的多巴胺释放事件与多个静脉曲张。这阻止了对离散静脉曲张种群中多巴胺释放的理解。使用近红外荧光(980 nm)多巴胺纳米传感器“油漆”(andromeda),我们表明动作电位引起的诱发的多巴胺释放是高度异质的,并且还需要分子启动。使用仙女座,我们可以在具有高时间分辨率(15张图像/s)的单个成像场中同时以多巴胺能静脉曲张的形式可视化多巴胺释放。我们发现,多巴胺释放的“热点”是高度异质性的,仅在所有静脉曲张的17%处被检测到。在缺乏Munc13蛋白的神经元中,在电刺激过程中废除了多巴胺释放的神经元,这表明多巴胺释放需要囊泡启动。总而言之,仙女座揭示了多巴胺释放的时空组织。
最近,针对性的纳米壳的设计用于癌症化学疗法提供了另一种方法。一方面可以通过使用药物包裹的纳米颗粒来拉长血液循环时间并改善肿瘤药物内疏水性药物的生物利用度。另一方面,它可以通过将药物封装的纳米颗粒与靶向配体连接在一起,从而促进肿瘤药物的递送。5,6 These nanovehicles are o en made from macromo- lecular materials such as poly(lactide- co -glycolide) (PLGA), chi- tosan and poly-hydroxyethyl methacrylate/stearic acid, forming dendrimer, liposomes, 7,8 polymers 9 and inorganic nano- particles.10中的壳聚糖(CS)是通过脱乙酰化获得的阳离子自然多糖,是地球上第二大最丰富的生物聚合物损失。11,12 Cs也被称为有希望的生物材料,因为它的生物降解性,无毒性,生物相容性和免疫性。13 - 15但是,CS的水分溶解度差会限制其在药物输送中的应用。16在我们先前的研究中,低分子量的两亲性寡核酸壳可自我组装成水中的纳米细胞,已合成