(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 4 月 1 日发布。;https://doi.org/10.1101/2020.03.30.016477 doi:bioRxiv preprint
Hong-Ou-Mandel (HOM) 效应是一种令人着迷的量子现象,无法用经典解释。传统上,远程非线性源已用于在 HOM 分束器上实现光子的重合。在这里,我们建议可以使用位于分束器间隙上的超辐射近场耦合发射器在本地创建 HOM 干涉所需的重合发射源。我们表明,使用 HOM 光子检测可以大大增强对分束器间隙介电常数变化的灵敏度和相应的 Fisher 信息。随后,我们概述了将超辐射发射器与实际传感器系统集成的几种策略。总之,这些发现应该为广泛的近场 HOM 量子传感器和新型量子设备铺平道路。
大多数人都熟悉帕夫洛维亚的调节,其中奖励的预期行为遵循了预测的刺激。这种机制的背后是纹状体中释放的多巴胺,纹状体是皮层基底神经节的最大结构,它连接运动运动和动机。然而,尚不清楚将哪种多巴胺信号传输到纹状体以引起灵长类动物的行为。
Kai Mulcock,四年级,物理专业。作为我完成的第一项生物实验室工作,这是一个很好的介绍!有同学带领我上课很有帮助,因为我在询问和学习不同主题时感到更加自在和自信(尽管我对 A 级以外的任何生物学背景一无所知)。由于我不是生物学专业的学生,所以我不能谈论太多理论,但是,看到物理学中的一些东西的应用非常有趣!它提供了一个有用且必要的步骤,帮助我了解这是否是我想要进一步探索的领域,同时也向我展示了作为非生物学学生我可以填补哪些空白!
Kai Mulcock。 第四年,物理学。 作为我所做的生物实验室工作的第一个工作,这是一个很好的介绍! ,让同学带领上课很有帮助,因为我对询问和了解不同主题的自信和自信(尽管不知道超出水平的任何生物背景)。 ,由于我不是生物学专业的学生,所以我谈论的理论太多了,看到物理学的某些事情的应用也非常有趣! 它为帮助我知道这是否是我想探索的领域提供了一个有用的必要步骤,同时还向我展示了我可以作为非生物学生填补的何种利基!Kai Mulcock。第四年,物理学。作为我所做的生物实验室工作的第一个工作,这是一个很好的介绍!,让同学带领上课很有帮助,因为我对询问和了解不同主题的自信和自信(尽管不知道超出水平的任何生物背景)。,由于我不是生物学专业的学生,所以我谈论的理论太多了,看到物理学的某些事情的应用也非常有趣!它为帮助我知道这是否是我想探索的领域提供了一个有用的必要步骤,同时还向我展示了我可以作为非生物学生填补的何种利基!
荧光照明是人们感兴趣和关注的根源(“办公室照明”,1980; Veitch等,1993)。关注包括对健康,情绪和行为的影响,从视觉不适到严重的问题,例如皮肤癌(Lindner&Kropf,1993; Stone,1992; Veitch等,1993; Veitch&Gifford,1996)。荧光灯的一个特征一直被归咎于这些抱怨的原因是光谱发电(SPD),这是各种波长在光的整体颜色外观上的相对贡献(Rea,1993)。自然日光具有广泛,相对平坦的SPD,并且被许多人认为最适合健康和福祉(Veitch等,1993; Veitch&Gifford,1996)。全光谱荧光灯(FSFL)被认为模仿了日光的光谱质量。许多人认为FSFL与自然日光相似。最初对FSFL的兴趣始于对植物的简单观察(Ott,1973)和动物园动物(Blatchford,1978; Laszlo,1969),这些观察似乎在FSFL下壮成长。对感知和行为效应的研究包括对学童的可见性,多功能和学业表现的研究,以及办公室工作人员的疲劳。FSFL对健康和福祉的益处是有争议的。有人认为,缺乏可靠的科学证据来支持灯标签中的健康主张(食品和药物管理局,1986年)。媒体注意尽管如此,很大一部分的公众接受了这些主张,他们认为模仿日光对健康的光线更适合健康(Veitch等,1993)。
摘要:在日常生活中,假冒伪劣产品特别是货币、药品、食品、机密文件等,会带来十分严重的后果,发展具有多层次安全性的防伪认证技术是克服这一挑战的有力手段。在各种防伪技术中,荧光防伪技术以其材料来源广泛、成本低廉、使用简便、隐蔽性好、响应机制简单等特点,被广泛用于打击造假者。螺吡喃因具有可逆的光致变色性质,在防伪和信息加密领域受到科学家的青睐。本文对目前可用的螺吡喃基荧光材料从设计到防伪应用进行了综述,旨在帮助科学家设计和开发具有高安全性、高性能、响应速度快、防伪等级高的荧光防伪材料。
对于具有各向异性特性的设备,必须使用定向孔的微观图形材料。晶体和多孔金属有机框架(MOF)是理想的材料,因为它们的化学和结构性突变性可以精确调整功能性能,用于从微电子到光子学的应用。在此,设计了一个可模式的莫弗胶:通过在X射线暴露下使用光掩膜,MOFFILM在辐照区域分解,在未暴露的区域中保持完整。MOFFILM同时用作抗药性和功能性多孔材料。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。 用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。 此外,定向的MOF模式通过荧光染料功能化。 结果通过旋转激光激发的极化角,显示了MOF中染料的比对。 通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。虽然对齐的Cu(OH)2纳米质体的异质增长用于沉积定向的Moffimfms,但通过将溴化二羧酸酯配体(BR 2 BDC)整合到基于铜的MOF CU 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 LABCO(DABCO(DABCO)中,可以实现对辐射的敏感性(dabco = 1 ockco = 1,4-diazabice; BDC/BR 2 BDC)。用激光辐射时的石版样品充当辐射时的不同光栅,从而确定了扩展的MOF微图案的质量。此外,定向的MOF模式通过荧光染料功能化。通过旋转激光激发的极化角,显示了MOF中染料的比对。通过控制对光的功能响应,该MOF模式协议可用于光子设备的光学组件的微分化。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。
通过时间分辨的吸收和荧光光谱研究,研究了荧光日二烯(FDAE)衍生物的荧光二乙烯(FDAE)衍生物的激发态动力学的抽象近红外两光子吸收和激发态动力学。用量子化学计算进行预筛选预测,封闭环异构体中用甲基噻酯基(MT-FDAE)的衍生物具有两光子的吸收横截面 - 大于1000 GM,这是通过Z-SCAN的测量和激发功率依赖于瞬时吸收的实验证实的。比较在一光子和同时的两光子激发条件下瞬时吸收光谱的比较表明,在CA的时间表上,在三个途径上停用了较高激发态的MT-FDAE的闭合环异构体。200 fs:(i)比单光过程,(ii)内部转换到s 1状态的环反应反应的效率更高,(iii)放松到与s 1状态不同的较低状态(s 1'状态)。时间分辨的荧光测量结果表明,该S 1'状态被放松到S 1状态,具有较大的排放概率。在本工作中获得的这些发现有助于以两光子的方式扩展FDAE到生物学窗口的开关切换能力,并应用于超分辨率荧光成像。