。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2021年2月16日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2021.02.15.431139 doi:Biorxiv Preprint
如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。 1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。 手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。 由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。 2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。 基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。 3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。 5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。 6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。 已经建立了广泛的效果,以开发多种类型的无机和有机PTA。 无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和如今,随着人口迅速增长和全球衰老,癌症已成为人类死亡的主要原因。1癌症的常规临床治疗方法,包括手术干预,化学疗法和放疗,仍然具有de neciencies。手术治疗无法去除所有肿瘤细胞,有时甚至会导致肿瘤细胞的扩散。由于缺乏肿瘤特异性城市,放疗和化学疗法都会在肿瘤治疗期间引起严重的局部或全身性影响。2此外,在化学疗法辐射过程中,肿瘤组织或细胞也将对化学治疗药物和放射线具有抵抗力。基于上述治疗方法的局限性光热疗法(PTT)是一种新型的非侵入性癌症治疗策略,由于其高效,易于操作,可忽略不可效应和良好的生物利用度,因此引起了广泛的关注。3,4 PTT的核心是光热剂(PTA),可以将近红外(NIR)光转化为细胞毒性热,以杀死肿瘤细胞。5重要的是,PTT可以忽略细胞抗性的影响,因为它通过诸如蛋白质变性和膜破裂等物理机制诱导细胞死亡。6此外,它可以实现高精度,因为仅当将NIR光和PTA组合在一起时才产生热效应。已经建立了广泛的效果,以开发多种类型的无机和有机PTA。无机纳米材料,包括金纳米颗粒,7,8 sul nanoparticles,9,10和
术中治疗的标准形式(即,白光照明下的肿瘤组织切除,WLI)。3,5在健康的脑组织中迅速迅速与非常低的细胞浓度的患病组织延伸以外的多个百分点,超出了非态性局部硬化性肿瘤质量,这显着地使任何形式的治疗部门都伴随着治疗的效果,尤其是在整个手术方面的影响(如果有帮助的情况下),因为该组织的差异(如果有帮助),因为该组织有帮助,因为这种疾病的范围是在质地上的差异)图像删除的术中和术中成像方式(即 ,图像未实时获取)。 此外, GBM表现出相当大的肿瘤内和间异质性,在生物学上也适应逐渐变化的化学疗法或静态抗性或静止。 6靶向脑部疾病,例如GBM,具有小分子或生物学疗法,因为存在Nicky Nicky半渗透的血脑屏障(BBB),因此正在挑战。 BBB表现出极低的溶质渗透性,这有助于维持脑稳态。 因此,术前和术后治疗3,5在健康的脑组织中迅速迅速与非常低的细胞浓度的患病组织延伸以外的多个百分点,超出了非态性局部硬化性肿瘤质量,这显着地使任何形式的治疗部门都伴随着治疗的效果,尤其是在整个手术方面的影响(如果有帮助的情况下),因为该组织的差异(如果有帮助),因为该组织有帮助,因为这种疾病的范围是在质地上的差异)图像删除的术中和术中成像方式(即,图像未实时获取)。GBM表现出相当大的肿瘤内和间异质性,在生物学上也适应逐渐变化的化学疗法或静态抗性或静止。6靶向脑部疾病,例如GBM,具有小分子或生物学疗法,因为存在Nicky Nicky半渗透的血脑屏障(BBB),因此正在挑战。BBB表现出极低的溶质渗透性,这有助于维持脑稳态。因此,术前和术后治疗
通讯作者:Deborah K. Lieu,博士,加利福尼亚大学戴维斯分校,内科系,心血管医学科,再生疗法研究所 1616,2921 Stockton Blvd.,萨克拉门托,CA 95817,电话:916-734-0683,dklieu@ucdavis.edu。作者贡献 Sun:构思和设计,数据收集和汇编,数据分析和解释,手稿撰写 Kao:数据收集 Chang:数据收集 Merleev:软件开发和数据分析 Overton:数据收集 Pretto:数据收集 Yechikov:软件开发,数据分析和解释 Maverakis:软件开发和数据分析 Chiamvimonvat:数据分析和解释,手稿最终审定 Chan:提供仪器,手稿最终审定 Lieu:构思和设计,资金支持,数据分析和解释,手稿撰写,手稿最终审定
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 4 月 1 日发布。;https://doi.org/10.1101/2020.03.30.016477 doi:bioRxiv preprint
荧光照明是人们感兴趣和关注的根源(“办公室照明”,1980; Veitch等,1993)。关注包括对健康,情绪和行为的影响,从视觉不适到严重的问题,例如皮肤癌(Lindner&Kropf,1993; Stone,1992; Veitch等,1993; Veitch&Gifford,1996)。荧光灯的一个特征一直被归咎于这些抱怨的原因是光谱发电(SPD),这是各种波长在光的整体颜色外观上的相对贡献(Rea,1993)。自然日光具有广泛,相对平坦的SPD,并且被许多人认为最适合健康和福祉(Veitch等,1993; Veitch&Gifford,1996)。全光谱荧光灯(FSFL)被认为模仿了日光的光谱质量。许多人认为FSFL与自然日光相似。最初对FSFL的兴趣始于对植物的简单观察(Ott,1973)和动物园动物(Blatchford,1978; Laszlo,1969),这些观察似乎在FSFL下壮成长。对感知和行为效应的研究包括对学童的可见性,多功能和学业表现的研究,以及办公室工作人员的疲劳。FSFL对健康和福祉的益处是有争议的。有人认为,缺乏可靠的科学证据来支持灯标签中的健康主张(食品和药物管理局,1986年)。媒体注意尽管如此,很大一部分的公众接受了这些主张,他们认为模仿日光对健康的光线更适合健康(Veitch等,1993)。