大脑皮层的旋转似乎是折叠的结合 - 通过折叠 - 将皮质片板进入紧密的颅内空间(Hofman,1989; Zilles et al。,2013)。鉴于女性的颅内空腔比男性小,因此在女性大脑中,折叠程度可能更高。然而,皮质折叠的潜在机制很复杂(Caviness,1975; Llinares-Benadero&Borrell,2019; Rademacher等,1993; Rakic,1988,1988,1998; Rash et al。,2023; 2023; Richman et al。 Burnod,2005年; 1997年),就性别差异而言,验尸和体内研究的结果都相当不一致。更具体地说,一些研究报告了较大程度的皮质折叠,通常称为皮质复杂性,皮质卷积或皮质旋转(Luders&Kurth,2020)与雄性大脑相比,与雌性大脑相比,与雄性大脑相比(Cui等人,2023年,2023年; Gautam等人,2015年的相比,2006年的效果; 2006年,2006年,2004年,luders等。 (Cui等,2023; Fish等,2017; Gautam等,2015; Li等,2014; Mavridis等,2011; Raznahan等,2011; Wang等,2016)或根本没有性别差异) Zilles等,1988)。这些发现的一些发现可能是通过以下事实来解释的:七个研究没有说明脑大小的性别差异,而那些确实使用了不同校正方法的研究(例如,缩放和剩余方法)。另一个未解决的问题是指皮质旋转的确定。鉴于大多数皮质折叠,至少是主要回旋和硫磺的,在子宫内定义(Armstrong等,1995; Chi等,1977;
PLENARY and CONCURRENT SESSIONS Bioinformatics & Genomics Chromatin & Epigenetics Chemical Biology of RNA New Technologies Extracellular RNA Granules & Condensates High through-put discovery Interconnected RNA Processes Long Non-coding RNAs & Circular RNAs Origins of Life and evolution Regulatory RNAs in Bacteria & Archaea Ribosome Biogenesis & Modification Ribozymes & Riboswitches RNA & Cellular Immunity RNA & Disease RNA Modification & Editing RNA Nanotechnology RNA Structure, Folding & Modeling RNA Synthetic Biology & Systems Biology RNA Transport & Localization RNA Turnover RNPs: Biogenesis, Structure & Function Polyadenylation & 3′ end formation Small Non-coding RNAs in Eukaryotes Splicing Mechanism Splicing Regulation & Alternative用于治疗和诊断转录的靶向RNA靶向RNA:机理与生物学翻译机制翻译调节tRNA:处理和功能病毒RNAS
人类糖蛋白 α-1-抗胰蛋白酶 (AAT) 是一种丝氨酸蛋白酶抑制剂,其病理变体会错误折叠并形成自缔合聚合物,与 AAT 缺乏症有关。生化分析表明,AAT 在核糖体翻译过程中自然停滞,并形成强制性压缩中间体,该中间体在翻译后完成折叠,但在存在 Z 突变时容易发生错误折叠 (1)。在本项目中,我们旨在使用 19F NMR 光谱法表征核糖体上 AAT 中间体的结构。目前,19F NMR 是唯一能够直接观察共翻译折叠中间体的实验技术 (2),而位点特异性标记允许分别通过化学位移分析和顺磁弛豫增强测量获取短程和长程结构信息。
一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
•转录和复制等过程要求DNA的两条链暂时分开,从而允许聚合酶访问DNA模板。但是,核小体的存在以及将染色质折叠为30纳米纤维的折叠构成障碍物,以放松并复制DNA的酶。
折纸是日本传统的折纸艺术,它被创造性地应用于机械工程领域,为机械设计和功能力学带来了革命性的变革。折纸工程通常被称为“折纸工程”,这是一个工程领域,利用折叠原理来制造轻巧紧凑的结构和机制,既灵活又坚固。折纸是机械工程中与可展开结构相关的最重要应用之一。例如,NASA 使用折纸设计可折叠太阳能电池板、天线或其他太空组件,这些组件在发射时必须紧凑,并可在太空中完全展开。这种设计最大限度地减少了空间和重量限制。*Miura 折叠* 是一种折纸图案,通常用于将大面积的表面折叠成紧凑的体积。因此,它被用于新的太空探索技术。
详情:SH-60B 与 UH-60A 有 83% 的通用性。主要变化包括防腐保护、更强大的 T700 发动机、单级油压主起落架、用机身结构取代左侧门、增加两个武器挂架,并将尾起落架向前移动 13 英尺(3.96 米)以减少舰载着陆的占地面积。其他变化包括更大的燃料电池、电动叶片折叠系统、折叠水平稳定器以便存放,并在左侧增加一个 25 管气动声纳浮标发射器。飞机两侧主起落架的短翼整流罩中最初还安装了紧急漂浮系统。然而,该系统被发现不实用,可能会在紧急情况下阻碍出口,因此漂浮装置随后从短翼上拆除。
摘要。内质网(ER)是用于蛋白质合成,折叠和修饰,脂质合成和钙储存的必不可少的细胞器。当内源性或外源性刺激导致ER合成的蛋白质折叠功能障碍时,许多展开或错误折叠的蛋白会积聚在ER腔中,并引起一系列随后的反应,称为ER应激。如果ER应力是连续的,则展开的蛋白质反应(UPR)不足以去除累积的展开和错误折叠的蛋白质,因此,UPR信号通路将驱动细胞凋亡。胶质母细胞瘤(GBM)目前是神经系统中最具侵略性和最常见的恶性肿瘤。由于ER应力可能会增加GBM对替莫唑胺的敏感性,因此本文回顾了ER应激诱导的凋亡的可能机制和影响ER应激的因素,并评估了ER应激作为治疗靶标的潜力。