。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 12 月 24 日发布。;https://doi.org/10.1101/2022.05.12.491630 doi:bioRxiv 预印本
声音处理的年代和横向化对大脑中听觉刺激的处理的理解显着贡献。There is ample evidence that the temporal hierarchy and the interactions between the right- and left-sided auditory pathways significantly determine the circuits between the peripheral to the cortical level ( Tervaniemi and Hugdahl , 2003 ; Eggermont and Moore , 2012 ), pointing out that the left hemisphere is specialized for temporal processing, whereas the right hemisphere subserves processes domiciled in空间/光谱域(Zatorre和Belin,2001; Poeppel,2003; Boemio等人,2005年; Schönwiesner等。,2005年)。人类听觉皮层被细分为具有多个互连的三个主要部分:核心(主要的听觉皮层),皮带(次级听觉皮层)和正确分子区域(Hackett等人(Hackett等),1998; Rauschecker和Scott,2009年),它们从皮质下边缘投影获得皮质输入(Kraus and Nicol,2005; Wong等人。,2007年; Kraus和Chandrasekaran,2010年; Kraus and Anderson,2014年; Kraus等。,2017年)和来自较高认知水平和触发连接的自上而下的预测(Zatorre等人,2007年; Rauschecker和Scott,2009年)。音乐大脑是显示听觉处理的神经可塑性的绝佳模型(Münte等人,2002年; Wan and Schlaug,2010年)。积极的音乐制作涉及众多对感知,认知,行为和大脑活动的神经过程(Hyde等人。,2009年; Moreno等。,2009年; Skoe等。,2015年; Slater等。,2015年; Habibi等。,2018年至青春期(Tierney等人。,2015年)和成年(Pantev等人,1998; Herdener等。,2010年; Benner等。,2017年;詹姆斯等人。,2020)。此外,在了解神经处理与音乐专业知识(指音乐能力和音乐训练)和杰出的听觉技能方面的关系方面获得了宝贵的见解(Zatorre等人。,2007年; Kraus和Chandrasekaran,2010年; Zatorre and Salimpoor,2013年; Kraus and Anderson,2014年; Wengenroth等。,2014年)。发现,在听觉皮层中心的Heschl Gyri(HG)平均比非音乐家的灰质平均多130%(Schneider等人。,2002)。音乐家还具有扩大的听觉诱发响应模式(Schneider等人,2005年; Benner等。,2017年)。可以通过磁脑摄影(MEG)定位于第一HG的中心部分,包括早期中等潜在的P30和随后发生的P50响应模式,发生在刺激后,刺激性30和50 ms。听觉带和偏对区域的随后的次级N1和第三纪P2响应更多地源于第一hg的周围带区域(Schneider等人,2005年)。晚期听觉诱发领域的P1-N1-P2复合物通常与基本声音感知,注意因素,特征识别和
随着气候变化加剧了极端天气灾难,受影响社区的心理健康是一个不断提高的关注点。在最近对725名加利福尼亚人的研究中,我们表明,直接暴露于加利福尼亚最致命的野火(2018年的CAMP FIRE)的人比未暴露于火灾的对照组的慢性慢性症状明显更大。在这里,我们研究了这些个体的子仪:直接暴露(n = 27),间接暴露(他们目睹了大火,但没有直接影响,n = 21),与年龄和性别匹配的非暴露罪(n = 27)。所有参与者都接受了同步脑电图(EEG)脑记录的认知测试。在我们的样本中,有67%的人直接暴露于火灾中,报道了最近发生的创伤,而间接暴露的印度人中有14%和0%的非暴露对照组报告了最近的创伤暴露。暴露的个体表现出明显的认知缺陷,尤其是在干扰处理任务和刺激诱发的额额质体活动上,如该任务所测量的。在所有受试者中,我们发现左额叶皮质中刺激诱发的活性与总体改善的干扰处理效率有关,这表明在火灾暴露的个体中观察到的活动增加可能反映了与认知控制相关的皮质过程的补偿性增加。据我们所知,这是第一个研究最近气候创伤的认知和潜在神经影响的研究。
用于定义大脑皮层区域的图谱是基于表面的 HCP-MMP1 图谱 (Glasser 等人,2016)。对于皮层下区域,将图谱转换为体积空间并进行如下修改,如其他地方详细描述的那样,以生成 HCPex 图谱 (Huang 等人,2022)。首先,使用 Winterburn 等人 (2013) 提供的模板将海马和下托定义为单独的区域。在我们的区域列表中,如表 S1 所示,新的海马区域被分配到 HCP 列表中的海马槽中。下托作为新区域出现在列表的后面。 HCPex 图谱中的其他新区域 (Huang 等人,2022) 包括丘脑、壳核、苍白球外部节、苍白球内部节、杏仁核和伏隔核,均使用 CIT168 强化学习图谱中的模板定义 (Pauli 等人,2018)。
摘要需要确定重度抑郁症的生物学指标,以帮助指导适当的诊断和优化治疗。动物模型模仿抑郁症的方面是对相关途径的早期探索的基本工具。在这项研究中,我们使用了Flinders敏感和抗药性线(FSL/FRL)来探索血管内皮生长因子(VEGF)途径基因(VEGF)途径基因的中心和外周经训练变化及其在单剂量的S-酮胺(15 mg/kg)之后的时间调节。我们发现S-酮胺诱导了FSL大鼠的快速(1小时)和持续(2和14天)的抗抑郁样作用。Analysis of mRNA expression revealed significant strain effects of Vegf, Vegf164, Vegfr-1, Nrp1, Nrp2, Rictor , and Raptor in the prefrontal cortex (PFC) and of Vegf164, GbetaL , and Tsc1 in the hippocampus (HIP), which indicates suppression of VEGF signaling in the FSL rats compared to FRL老鼠。通过FSL大鼠的血浆中VEGF和MTOR的表达降低,这一概念得到了进一步的证实。在大脑中,S-酮胺引起的急性相的转录变化,而不是持续相。 S-酮胺对PFC和HIP以及HIP中VEGF和VEGFR-1的VEGFR-2具有显着的治疗作用。 此外,我们发现S-酮胺特异性恢复了FSL大鼠PFC中NRP2和MTOR的降低。 总而言之,在大脑中,S-酮胺引起的急性相的转录变化,而不是持续相。S-酮胺对PFC和HIP以及HIP中VEGF和VEGFR-1的VEGFR-2具有显着的治疗作用。此外,我们发现S-酮胺特异性恢复了FSL大鼠PFC中NRP2和MTOR的降低。总而言之,
关于老年人身上容易观察到的右前额皮质的额外 fMRI 测量活动是否代表增强认知的补偿性激活,或者维持年轻时的大脑活动是否最能支持晚年认知功能,存在相当多的争议。为了研究这个问题,我们测试了一个由 461 名成年人(年龄 20-89 岁)组成的大样本,并在语义判断 fMRI 任务中将腹外侧和背外侧前额皮质的左侧化程度作为预测认知的个体差异变量。我们发现年轻人左侧化程度较高,但左侧化并不能预测更好的认知,而中年人前额皮质左侧化程度较高则可预测更好的认知表现,这证明左侧化、类似年轻人的模式在中年人身上是最佳的。这种关系在老年人身上则相反,较低的侧面性分数与更好的认知相关。研究结果表明,老年人的双侧性有助于认知,但这种模式在中年早期表现出来是低绩效者的特征。本文讨论了这些发现对当前神经认知老化理论的影响。
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 11 月 24 日发布了此版本。;https://doi.org/10.1101/2022.11.22.517525 doi:bioRxiv 预印本
结果:我们已经证明,从少数前额叶位置进行的静息状态 fNIRS 记录为检测 AD 和监测其进展提供了一种有前途的方法。首先使用高密度连续波 fNIRS 系统来验证 AD 患者前额叶皮质区域相对较低的血流动力学活动。通过使用氧合血红蛋白浓度变化的发作平均标准差作为输入支持向量机的特征;我们随后表明,光学通道子集在预测 AD 的存在和严重程度方面的准确性明显高于偶然性。结果表明,AD 可以用 0.76 的敏感度得分和 0.68 的特异性得分来检测,而 AD 的严重程度可以用 0.75 的敏感度得分和 0.72 的特异性得分(≤ 5 个通道)来检测。
关于通过阳极经颅直流电刺激 (tDCS) 调节左背外侧前额叶皮层 (前额叶 tDCS) 的走神倾向的能力,存在相互矛盾的证据。在这里,20 名参与者在 MRI 扫描仪中接受了 20 分钟的主动和假性前额叶 tDCS,分两次进行 (平衡)。在每次治疗中,他们完成两次持续注意力反应任务 (tDCS 之前和期间),其中包括记录走神主观反应的探针。我们通过动态功能网络连接 (dFNC) 和对默认模式、显着性和执行控制网络区域的动态因果建模分析,评估了 tDCS 对行为反应以及功能和有效动态的影响。行为结果提供了大量证据,支持 tDCS 对任务表现和走神倾向没有影响。同样,我们发现 tDCS 对潜在大脑状态的频率(频率)或停留时间(花费的时间)以及有效连接没有影响。总体而言,我们的结果表明前额叶 tDCS 无法调节走神倾向或影响潜在大脑功能。这扩大了之前行为复制失败的结论,表明前额叶 tDCS 可能不会导致自我生成认知过程中大脑活动的细微变化(即在行为阈值以下)。
摘要 额叶皮层被认为是许多高级认知能力的基础,从自我控制到长期规划。为了反映这些不同的需求,额叶神经活动具有众所周知的特殊性,其调节特性与无数的行为和任务特征相关。这种复杂的调节方式使得很难提取控制额叶神经活动的组织原则。在这里,我们对比了两种成功但看似不相容的方法,它们已经开始应对这一挑战。受单神经元调节的不可解释性的启发,第一种方法将额叶计算视为任意神经元混合所经过的动态轨迹。相比之下,第二种方法试图用皮层细胞类型的生物多样性来解释额叶活动的功能多样性。受最近在额叶神经元中发现的功能簇的启发,我们提出了这些群体和细胞类型特定方法在神经计算方面的一致性,并提出了这样的猜想:进化继承的细胞类型约束创建了额叶群体动态必须在其中运行的支架。