核定蛋白的蛋白质自组装偶氮修饰的蜘蛛丝蛋白用于制备具有固定在同一蛋白质涂层上的水凝胶样性能的纳米纤维网络中。在温和的水性环境中形成网络的厚度在2至60 nm之间,仅由蛋白质浓度控制。将蛋白质中的叠氮基团纳入纳米纤维上的短核酸序列,这些核酸序列可用于基于特定杂交的修饰,这是荧光标记的DNA互补证明的。使用脂质修饰符将DNA有效地掺入非辅助Jurkat细胞的膜中。基于核酸的互补性,可以使用可调细胞密度的纳米水凝胶上细胞上高度特异性的DNA辅助固定化。用竞争性寡核苷酸探针证明了DNA细胞到表面锚的可寻址性,从而迅速释放了75-95%的细胞。另外,我们开发了一个任意形状的微孔的基于光刻的图案,该图案在空间上定义了
a) Univ Gustave Eiffel, Univ Paris is Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France B) Univ Gustave Eiffel, Cosys-Lisis, F-77454 Marne-la-Vallée, France C) Laboratory of Physics of Mince Interfaces and Simals (LPICM) Ecole Polytechnique,Polytechnique de Paris,91128 Palaiseau,法国
由于其廉价的生产,高电导率,掺杂的简单性以及增强的亲水性特性,多孔碳泡沫具有很大的潜力用于储能和转换应用。在这项研究中,氧化石墨烯(GO)被成功地嫁接到碳泡沫上,并在接头的帮助下使用简单的浸入涂层技术。3D多孔碳泡沫是使用商业三聚氰胺泡沫的一步碳化产生的。使用XRD,FTIR,BET,TGA,XPS,RAMAN和FESEM来表征该材料,以确认其结构,功能组,表面积,热稳定性和形态特征。样品的应力应变测试是在电子通用测试机上进行的。这些泡沫具有足够的表面积(99 m 2 /g),高水平的C含量(79.15%)和出色的可压缩性。此外,作为针对不同应用的建议材料,这种独特的GO移植多孔碳泡沫也倾向于在不同的研究领域提供出色的性能。总而言之,由于直接的准备过程和引人入胜的特性,GO移植的多孔碳泡沫在不同应用方面具有出色的前景。关键字:储能;氧化石墨烯;三聚氰胺泡沫;多孔碳泡沫
图 1 (a) 描述功能化聚酐合成的示意图。靶向配体 CPTP 首先被乙酰化,然后在标准聚合物合成条件下与共聚物(“P”)发生反应。(b) 通过快速纳米沉淀法合成 NP,形成具有 COOH(即非功能化)或 CPTP(即功能化)端基部分的 NP。Mito-Met 结构示意图,被 NP 封装以进行功效研究,并针对可溶性剂量进行测试。Mito-Met C10(n = 9)用于研究。 (d) 功能化纯化聚合物的 1 H 核磁共振光谱显示 CPTP 苯基 CH 峰(δ 7.70 – 8.00,多重峰)以及聚合物 CPH 苯基 CH 峰(δ 8.02,双峰;δ 8.12,双峰);(e) 傅里叶变换红外光谱 - 功能化纯化聚合物的衰减全反射光谱显示 CPTP α -CH 2 弯曲峰(1450 cm 1)。对照包括仅 CPTP(未显示)和仅非功能化聚合物(显示)
1宾夕法尼亚大学生物工程系,宾夕法尼亚州,19104年,美国2,美国2宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州的儿童医院外科学系,宾夕法尼亚州。 16802, USA 4 Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA 5 Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 6 Institute for Immunology, Perelman School of Medicine, University of Pennsylvania,费城,宾夕法尼亚州,19104年,美国7宾夕法尼亚州宾夕法尼亚大学佩雷尔曼医学院,宾夕法尼亚州宾夕法尼亚州佩雷曼医学院
Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *Golbarg M. Roozbahani 1,2, †, Patricia Colosi 3, †, Attila Oravecz 4,5,6,7, †, Elena M. Sorokina 3, Wolfgang Pfeifer 1,2, Siamak Shokri 1, Yin Wei 1, Yin Wei 1, Yin Wei 7,9 , Marcello Deluca 10, Gaurav Arya 10, LászlóTora4,5,6,7, *,Melike Lakadamyali 3,11,12, *,Michael G. Poirier 1,8,13, *和Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Carlos E. Castro 2,8, *
量子物理和化学问题。 [1] 为此,世界各地的研究人员正致力于开发量子计算、量子模拟和量子传感。 [2] 这项技术的优势可能有助于解决一些影响深远的问题,如理解高温超导性、进一步实现处理器中晶体管的小型化以及预测新型药物的特性。 [3–5] 量子应用的基本单位是量子比特,一般来说,量子比特是一个具有两个或多个能级的系统,可以在一段有限的时间内进入相干叠加态,这段时间称为相干时间。 [6] 目前正在研究几种作为量子比特的系统,将它们的属性与特定的应用联系起来:用于量子通信的光子,[7] 用于量子计算的超导电路,[8,9] 和用于磁场量子传感的金刚石中的氮空位。 [10,11] 其他有趣的平台包括硅中的磷杂质、[12] 量子点、[13] 里德堡原子 [14] 和捕获离子。[15,16] 所有这些潜在的量子比特平台在作为独立单元工作时都表现出非凡的特性。然而,实现量子门需要将几个这样的单元耦合起来,而这具有挑战性。同样,由于缺乏能够在阵列中精确定位量子比特的制造工艺,它们的可扩展性也受到限制。[17] 必须满足这两个要求才能实现工作的量子装置,因此这是一项不简单的任务。分子自旋量子比特 (MSQ) 是一个很有前途的平台,可以应对这些挑战。[18–23] 分子是微观的量子物体,像原子一样,但其组成更灵活,具有在纳米级形成有序结构的巨大潜力。 [24,25] 由于其合成的多功能性,可以微调多个量子比特之间的相互作用 [26–28] 并修改配体壳以满足特定的实际需求,例如将量子比特转移到固体基底上或设备中。[4,29–32] 人们对 MSQ 的兴趣迅速增长,并在短时间内取得了有关化学设计与量子特性之间关系理解的显著成果。[33–41] 现在很明显,可以实现长的相干时间 [42–45] 并且可以设计多自旋能级系统,这要归功于量子门
功能材料。从这个方面来看,开发可扩展的方法来修改蛋白质的性质非常重要。蛋白质在材料科学中应用的一个有趣平台是淀粉样蛋白和淀粉样蛋白原纤维。此类原纤维是高度各向异性的物体,通常直径为 5-10 纳米,长度在微米范围内,[6] 其详细结构取决于特定蛋白质和原纤维化条件。[7] 原纤维由含有延伸 β 片层的原丝构成,这会导致形成染料可结合的疏水沟。虽然体内形成的淀粉样蛋白原纤维与多种疾病有关,包括阿尔茨海默病和帕金森病,[8] 但近年来已发现一系列功能性淀粉样蛋白,生物体将淀粉样蛋白用于建设性目的。 [8] 此类功能性淀粉样蛋白可为新型材料的开发提供灵感,最近,人们利用转基因大肠杆菌 ( E. coli ) 来制备可用作生物塑料的生物膜。[9] 此外,与疾病无关的蛋白质可以在体外形成原纤维,从而产生所谓的淀粉样原纤维。[10] 在下文中,我们将此类材料称为蛋白质纳米原纤维 ( PNF )。PNF 可以由多种蛋白质形成,其中许多蛋白质可大量获得且成本低廉(例如来自植物资源或工业侧流)。[11] 本文采用鸡蛋清溶菌酶 ( HEWL ) 作为蛋白质来源。HEWL 可大量获得(作为食品添加剂 E1105),而且成本相对较低。通过加热酸性 HEWL 水溶液,蛋白质很容易转化为溶菌酶 PNF,[10c,d] 下文缩写为 LPNF。由于其高长宽比,PNF 显示出一系列有趣的固有结构特性,例如极易形成凝胶或液晶相。[12] 一个众所周知的挑战是,当 PNF 组装成薄膜等宏观材料时,它们往往很脆。[13] 因此,最近一个有趣的发展是证明通过在聚乙烯醇 (PVA) 和/或甘油 (GLY) 存在下形成 PNF(源自植物蛋白或食物蛋白),可以制备具有坚固机械性能的可生物降解薄膜。[14] 此外,用发光分子功能化的 PNF 可以与 PVA 和 GLY 混合以形成独立的 LED 涂层。 [15] PNF 通常表现出新兴的光学特性,例如固有荧光和增加的双光子吸收。[16] 然而,为了充分利用 PNF 在光学应用方面的潜力,通常需要用有机荧光团对 PNF 进行功能化。[17] 大多数现成的有机荧光团都具有
摘要 细胞外囊泡(EVs)作为天然载体,因具有良好的生物相容性、迷人的理化性质和独特的生物调控功能,被视为纳米医学领域的一颗新星。然而,天然EVs的应用仍存在靶向性差、易从血液循环中清除等问题,限制了其进一步发展和临床应用。核酸具有可编程、靶向、基因治疗、免疫调控等功能,通过整合功能性核酸的工程设计和改造,EVs作为一种体内治疗系统表现出优异的性能。本文简要介绍了核酸在疾病诊断和治疗中的作用和机制,总结了核酸功能化EVs的研究策略,并重点介绍了核酸功能化EVs在纳米医学中的最新进展,最后提出了核酸功能化EVs作为一种有前途的诊断系统所面临的挑战和前景。
摘要背景:用于乳腺肿瘤成像的靶向造影纳米粒子有助于早期发现乳腺癌并提高乳腺癌的治疗效果。本文报道了一种表皮生长因子受体 2 (HER-2) 特异性、双峰、树枝状聚合物复合物的开发,用于增强 HER-2 阳性乳腺癌的计算机断层扫描 (CT) 和磁共振成像 (MRI)。该材料采用第五代聚(酰胺胺)树枝状聚合物、封装的金纳米粒子、螯合钆和抗人 HER-2 抗体来生产纳米粒子造影剂。结果:在两种小鼠肿瘤模型中的测试证实了这种造影剂对 HER-2 阳性肿瘤进行成像的能力。在患有 HER-2 阳性乳腺肿瘤的小鼠体内静脉注射这种纳米粒子可显著增强 MRI 信号强度约 20%,并将 CT 分辨率和对比度提高两倍。流式细胞术和共聚焦显微镜的结果证实了该复合物的特异性靶向性及其在人类 HER-2 阳性细胞中的内化作用。结论:这些结果表明,这种纳米颗粒复合物可以有效靶向和成像体内 HER-2 阳性肿瘤,并为开发这种用于 HER-2 阳性癌症的早期检测、转移评估和治疗监测的诊断工具奠定了基础。关键词:靶向、纳米颗粒、双模成像、计算机断层扫描、磁共振成像、HER-2