0009-0000-3805-9735 https://orcid.org/0009-0000-3805-9735,vipet103@uni-duesseldorf.de https://orcid.org/orcid.org/0009-0009-0009-0009-0009-8999999999999999999999-DEARELD https://orcid.org/0009-0006-6743-0904,tobias.finkenrath@hhu.de.de https://orcid.org/0009-0009-50007-5319-563X https://orcid.org/0000-0002-3523-2907,matias.zurbriggen@uni-duesseldorf.de https://orcid.org/000000-0000-0000-0000-7975-5013,urquizag@hhu.de artifortions:1)德国杜塞尔多夫2)德国植物科学卓越群体 *相应的作者关键词:植物合成基因组学,生物设计自动化,植物学,植物托布里克,金门,随机DNA。
宏基因组新一代测序 (mNGS) 是诊断传染病的一种变革性方法,它利用无偏高通量测序直接检测和表征临床样本中的微生物基因组。本综述全面概述了 mNGS 技术的基本原理、测序工作流程和平台。该方法的骨干包括对从不同样本类型中提取的总核酸进行散弹枪测序,能够在不了解传染源的情况下同时检测细菌、病毒、真菌和寄生虫。mNGS 的主要优势包括它能够识别稀有、新型或不可培养的病原体,与传统的基于培养的方法相比,可以更全面地了解微生物群落。尽管有这些优势,但数据分析复杂性、高成本以及需要优化样品制备方案等挑战仍然是重大障碍。mNGS 在各种全身性感染中的应用凸显了其临床实用性。本综述中讨论的案例研究说明了其在诊断呼吸道感染、血流感染、中枢神经系统感染、胃肠道感染等疾病方面的功效。通过快速识别病原体及其基因组特征,mNGS 有助于及时和有针对性的治疗干预,从而改善患者的治疗结果和感染控制措施。展望未来,mNGS 在传染病诊断领域的前景看好。生物信息学工具和测序技术的进步有望简化数据分析、提高灵敏度和特异性并缩短周转时间。与临床决策支持系统的集成有望进一步优化 mNGS 在常规临床实践中的利用。总之,mNGS 代表了传染病诊断领域的范式转变,为微生物多样性和发病机制提供了无与伦比的见解。尽管挑战依然存在,但持续的技术进步具有巨大的潜力,可以巩固 mNGS 作为现代医学武器库中的关键工具的地位,使临床医生能够精确、快速、全面地检测病原体。
casuarina equisetifolia(C。equisetifolia)是一种经济上重要的森林树种,通常在连续的单一养殖中作为沿海保护森林种植。持续种植逐渐影响了增长,并严重限制了C. eetetifolia行业的可持续发展。在这项研究中,我们分析了连续种植对埃母叶梭菌生长的影响,并从元基因组的角度探索了根际土壤微生态机制。结果表明,连续种植导致矮小,较短的根长度和降低的Equisetifolia幼苗根系。宏基因组学分析表明,有10种关键特征微生物,主要是actinoallomurus,actinomadura和分枝杆菌,负责连续种植的Equisetetifolia树木。定量分析表明,随着连续种植的增加,这三个属中的微生物数量显着减少。基因功能分析表明,连续种植导致环境信息处理 - 特征性微生物的信号转导能力减弱,并减少了雌雄同体的雌树叶面。降低了代谢,遗传信息加工恢复和修复的能力,导致微生物的传播减少并减少了雌树梭状芽孢杆菌的根际土壤中的微生物量。这些降低的能力进一步导致土壤微生物量减少,微生物碳和氮,微生物呼吸强度,土壤酶养分循环减少和其次,氨基酸代谢,碳水化合物代谢,聚糖生物合成和代谢,脂质代谢,辅助因子和维生素的代谢均大大降低,从而降低了土壤和代理碳和奈特罗的能力的降低。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
急性髓样白血病(AML)是癌症基因组学的原型,因为它是第一个发表的癌症基因组。大规模的下一代/大规模平行的测序工作已经确定了复发的改变,这些变化为预后提供了信息,并指导了靶向疗法的发展。尽管前线发生了变化和复发标准的护理标准,这是由于针对FLT3,IDH1/2和凋亡途径的小分子的成功,同种异体干细胞移植(AllOHSCT)以及由此产生的嫁接 - 与Leukemia(GVL)效应是大多数患者的唯一治愈途径。调节方案,预防疗法,抗感染剂和支持性护理的进展使这种方式可行,即使在患有高龄或医疗合并症的患者中,也可以减少与移植相关的死亡率。因此,复发已经成为移植失败的最常见原因。可能在AllOHSCT之后发生复发,因为残留疾病克隆在移植后持续存在,并从GVL中产生免疫逃脱,或者此类克隆可能会在AllOHSCT后早期迅速迅速增殖,并且超过了供体免疫重建,从而导致复发在任何GVL效应之前。为了解决这个问题,基因组知情的疗法越来越多地纳入移植前的调节中,或者作为移植后维持或预先置换治疗,以设置混合/下降的供体嵌合或可持续的可检测到的可测量可测量的残基疾病(MRD)。There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect.通过最大化分子靶向药物,免疫调节剂,常规化学疗法和GVL效应的协同作用,人们希望改善这种经常蒸发疾病的患者的结局。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
Asteraceae是最大的被子植物家族,因其出色的药用,园艺和观赏价值引起了广泛的关注。然而,关于星形科植物的研究由于复杂的遗传背景而面临挑战。随着测序技术的持续发展,从星状科物种中积累了大量的基因组和遗传资源。这促使对这个多样化的植物群中对全面的基因组分析的需求。为了满足这种需求,我们开发了Asteraceae基因组学数据库(AGD; http://cbcb.cdutcm.edu.cn/agd/)。AGD充当集中和系统的资源,赋予了各种领域的研究人员,例如基因注释,基因家族分析,进化生物学和遗传育种。AGD不仅包含高质量的基因组序列和细胞器基因组数据,而且还提供了广泛的分析工具,包括BLAST,JBROWSE,SSR FINDER,HMMSEARZER,HMMSEARCH,HEMMAP,HEATMAP,PRIMER3,PLANTIMSISMASH和CRISPRCASFINDER。这些工具使用户能够方便地查询,分析和比较各种星际科中的基因组信息。AGD的建立在推进Asteraceae基因组学,促进遗传育种并通过为研究人员提供全面且用户友好的基因组资源平台来维护生物多样性方面具有巨大的意义。
