全球约有 500 万公顷的东非和南亚半干旱环境下种植了小米,它是一种重要的两用作物,可满足这些边缘地区的粮食、饲料和营养需求。尽管产量潜力巨大,但包括小米在内的全球小黍种植面积在 1961 年至 2018 年间减少了 25.7%。小米改良计划于 1913 年在印度启动;然而,与改良其他主要谷物所投入的努力相比,尚未集中精力实现这种气候适应性作物的遗传增益。这导致即使经过 100 多年的育种,农民田地里的小米产量仍然低于其潜在产量。然而,重要性状具有显著的遗传变异。亚洲和非洲的育种计划已经根据当地需求改进了杂交技术和育种目标。 ICRISAT 是一家国际中心,其授权作物之一为小米,该中心正与合作伙伴合作开发新种质,以提高边远地区这种作物的生产力。该项目以印度和肯尼亚为基地,在过去几十年中在全球范围内开发和传播了种质和育种品系。许多有前途且适应性广的品种已在许多国家推出和采用。20 世纪 90 年代,印度和非洲小米基因库之间的杂交为印度的小米生产带来了范式转变。现在,随着新品种的鉴定,育种渠道得到了加强
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
casuarina equisetifolia(C。equisetifolia)是一种经济上重要的森林树种,通常在连续的单一养殖中作为沿海保护森林种植。持续种植逐渐影响了增长,并严重限制了C. eetetifolia行业的可持续发展。在这项研究中,我们分析了连续种植对埃母叶梭菌生长的影响,并从元基因组的角度探索了根际土壤微生态机制。结果表明,连续种植导致矮小,较短的根长度和降低的Equisetifolia幼苗根系。宏基因组学分析表明,有10种关键特征微生物,主要是actinoallomurus,actinomadura和分枝杆菌,负责连续种植的Equisetetifolia树木。定量分析表明,随着连续种植的增加,这三个属中的微生物数量显着减少。基因功能分析表明,连续种植导致环境信息处理 - 特征性微生物的信号转导能力减弱,并减少了雌雄同体的雌树叶面。降低了代谢,遗传信息加工恢复和修复的能力,导致微生物的传播减少并减少了雌树梭状芽孢杆菌的根际土壤中的微生物量。这些降低的能力进一步导致土壤微生物量减少,微生物碳和氮,微生物呼吸强度,土壤酶养分循环减少和其次,氨基酸代谢,碳水化合物代谢,聚糖生物合成和代谢,脂质代谢,辅助因子和维生素的代谢均大大降低,从而降低了土壤和代理碳和奈特罗的能力的降低。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
公共基因组资源的可用性可以为科学的管理决策提供证据,从而极大地帮助生物多样性评估、保护和恢复工作。本文,我们调查了生物多样性和保护基因组学的主要方法和应用,同时考虑了实际因素,例如成本、时间、必备技能和当前应用的缺点。大多数方法与目标物种或密切相关物种的参考基因组结合使用效果最佳。我们回顾了案例研究,以说明参考基因组如何促进整个生命之树的生物多样性研究和保护。我们得出的结论是,现在是时候将参考基因组视为基本资源并将其使用作为保护基因组学的最佳实践。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
0009-0000-3805-9735 https://orcid.org/0009-0000-3805-9735,vipet103@uni-duesseldorf.de https://orcid.org/orcid.org/0009-0009-0009-0009-0009-8999999999999999999999-DEARELD https://orcid.org/0009-0006-6743-0904,tobias.finkenrath@hhu.de.de https://orcid.org/0009-0009-50007-5319-563X https://orcid.org/0000-0002-3523-2907,matias.zurbriggen@uni-duesseldorf.de https://orcid.org/000000-0000-0000-0000-7975-5013,urquizag@hhu.de artifortions:1)德国杜塞尔多夫2)德国植物科学卓越群体 *相应的作者关键词:植物合成基因组学,生物设计自动化,植物学,植物托布里克,金门,随机DNA。