摘要。我们研究了重子化学势 µ B 对平衡和非平衡状态下夸克胶子等离子体 (QGP) 特性的影响。平衡状态下 QGP 的描述基于动态准粒子模型 (DQPM) 中的有效传播子和耦合,该模型与格点量子色动力学 (QCD) 中解禁温度 T c 以上的部分子系统的状态方程相匹配。我们计算了(T,µ B)平面内的传输系数,例如剪切粘度η 与体积粘度 ζ 与熵密度 s 之比,即 η/s 和 ζ/s,并将其与 µ B = 0 时的其他模型结果进行比较。QGP 的非平衡研究是在部分子-强子-弦动力学 (PHSD) 传输方法中进行的,该方法扩展到部分子领域,通过明确计算在实际温度 T 和重子化学势 µ B 下评估的每个单独时空单元中部分子散射的总和微分部分子散射截面(基于 DQPM 传播子和耦合)。在相对论重离子碰撞的不同可观测量中研究了它们的 µ B 依赖性的轨迹,重点关注 7.7 GeV ≤ √ s NN ≤ 200 GeV 能量范围内的定向和椭圆流系数 v 1 、v 2。
在这项研究中,使用了JETNET [21]数据集。每个数据集都包含Pythia [22]的射流,其能量约为1 TEV,每个射流包含多达30或150个成分(此处:30)。数据集在喷气发射的parton中。在这里,研究了顶级夸克,轻夸克和Gluon发射的喷气机的数据集[23,24]。每个数据集包含约170k个单独的喷气机分为110K / 10K / 50K用于培训 /测试 /验证,其中验证数据集用于我们的结果。射流成分,颗粒,用r = 0的圆锥半径聚类。8。这些颗粒被认为是无质量的,因此可以用它们的3-momenta或横向动量p t,伪t,伪质η和方位角角度描述。在JetNet数据集中,这些变量相对于喷气动量给出:ηrel Ibηi -ηi -η射流,ϕ rel i b ϕ i-(ϕ射流mod2π)和p rel t,i b p p t,i b p t,i / p t,i / p t,i / p t,jet,jet,i在喷气机中im ime im impoy im im ot a Jet中的粒子。计算这些相对数量的不变质量,例如,对于喷气质量,意味着m rel = m jet / p t,jet。Jetnet库[25]提供了本研究中使用的几个指标。此外,作者还提供了一个称为MPGAN [26]的基线模型。该数据集已在粒子物理社区中广受欢迎,作为基于PC的生成模型的基准[15-17,27-34]。
量子算法能够利用多项式数量的量子比特探索指数级的多种状态,因而在各类工业和科学应用中前景广阔。量子游走是研究最为深入的量子算法之一 [1]。与经典随机游走一样,其量子变体也被广泛用于增强各种量子计算和模拟 [2,3]。虽然量子游走与经典随机游走有着本质区别,但量子算法接近经典算法还是有一定的限度 [4]。经典随机游走的一个有用特性是它可以用马尔可夫链蒙特卡洛 (MCMC) 进行有效模拟,因为后续运动仅取决于当前位置,而不取决于之前的历史。这种 MC 性质是一些模拟多体物理系统的算法的核心,其中生成过程近似于局部的。对于同样具有重要量子特性的物理系统,MCMC 的速度是以固有量子模拟的准确性为代价的。高能物理中的部分子簇射就是这样一个物理系统 [ 5 ],其中夸克或胶子辐射出几乎共线的夸克和胶子簇射。真正的量子效应可以近似为 MCMC 的修正 [ 6 ],但无法在经典 MCMC 方法中直接有效实现。考虑以下量子树:每一步,自旋为 1/2 的粒子可以向左移动一个单位或向右移动一个单位。经过 N 步,该系统形成一个二叉树,其中 2 N
过去几十年来深度学习技术的发展和改进为高能物理学的算法方法创造了新的机会。尤其是,深度学习导致了算法识别算法的性能的显着进步,当在孔子大型强子撞机(例如cern the Cern the Colling collider)中产生时,由夸克或gluon碎片形成的结构。在本博士学位论文中,我们着重于深度学习方法,以增强CMS实验中喷气风味识别算法的性能。我们旨在通过改善模型鲁棒性来扩展其功能,以应对可能应用于算法使用的变量的变化。此外,通过扩展其最初的任务,我们为将来的研究带来了新的机会。首先,我们在创建保持喷气机结构的深神经网络的背景下探索变压器体系结构。我们建立了两个模型,其性能和计算成本为现场设定了新的最新技术。第二,我们基于对抗性攻击引入了一种数据不足的训练方法,从而提高了模型的稳健性,以防止输入变量的分布变化。增强鲁棒性对于改善校准后的模型性能是必要的。最后,我们成功地扩展了算法的任务以识别Hadronic Taus并估计喷气能量校正和分辨率。此外,我们介绍了奇怪喷气机的识别,这是LHC实验的第一个。最终,这项博士学位的工作导致创建了一类新的模型,具有改进的建筑,培训方法以及人工神经网络可能实现的范围的扩大范围。最终的模型(称为Upart)是LHC的CMS实验的JET识别的最新模型。通过源自奇怪夸克的喷气机的识别是LHC的第一个,一旦校准了新模型,就可以追求针对包含这种类型喷气的最终状态的新分析。
物质的三个状态是固体,液体和气体。- **固体**:在这种状态下,分子紧密地包装在一起,几乎没有移动的自由。这会导致刚性结构保持其形状和体积,无论外部压力或温度变化如何。固体的一个例子是冰,在标准大气压力下0°C以上加热时,它仅在水中融化。- **液体**:在液态下,分子靠近,但具有足够的能量可以自由移动。这种柔韧性允许液体在保持恒定体积的同时采用其容器的形状。液体的一个例子是水,它可以以低于0°C的冰或100°C以上的蒸汽存在。- **气**:在气态状态下,分子具有足够的能量,可以自由和快速移动任何方向。他们不会相互互动,这意味着气体往往会扩展以填充容器,同时保持其体积和形状。气体的一个例子是氧气,随着温度的降低,它变得更加致密,并且能够散布得较低。由于其分子之间的相互作用,每个物质都表现出独特的特性。这些分子的能级确定物质在给定的温度和压力下是否保持固体,液体或气态状态。物质具有四个主要状态:固体,液体,气体和血浆,但我们将重点放在前三个。固体具有确定的形状和体积,颗粒紧密堆积在一起。这些现象是在凝结物理学中研究的。液体具有其容器的形状,具有确定的体积,颗粒自由移动但仍然相互作用。气体还具有其容器的形状,既没有明确的形状也不具有确定的体积,并且粒子高度可移动,彼此弱吸引。在低温下,固体材料中的电子可以分为不同的阶段,包括具有零电阻的超导状态。磁性状态,例如铁磁性和抗铁磁性,也可以视为在特定模式中旋转对齐的物质阶段。在恒星或早期宇宙中发现的极端条件下,原子可以分解成其组成部分,从而导致物质或夸克物质,这是在高能量物理学中研究的。对20世纪物质特性的理解导致识别了许多物质状态,包括一些值得注意的例子。固体在没有容器的情况下表现出明确的形状和体积,而无定形固体缺乏远距离顺序。晶体固体的原子有常规图案,准晶体显示长期顺序,但没有重复模式。多态材料可以存在于不同的结构阶段,这些阶段被认为是物质的独立状态。液体符合其容器,但保持恒定的体积,而气体则膨胀以填充容器。介质状态(例如塑料晶体和液晶)在固体和液体之间表现出中等特性。这些现象在1920年代进行了预测,但直到1995年才观察到。超临界流体结合了液体和气体的特性,存在于高温和压力下,其中液体和气体之间的区别消失了。等离子体与气体不同,其中包含大量的游离电子和对电磁力反应强烈反应的电离原子。Bose-Einstein冷凝物是玻色子占据相同量子状态的相,而费米米奇冷凝物涉及像玻色子一样表现的成对费米子。超导性是一种现象,当某些物质冷却以下时,某些物质表现出零电阻和磁场的驱动。该状态具有各种形式,包括BCS理论所描述的常规超导体和破坏额外对称性的非常规的超导体。此外,铁磁超导体与铁磁性显示出固有的共存,而Charge-4E超导体则提出了一种新的状态,其中电子被绑定为四倍。材料可以根据其费米表面结构和零温度直流电导率进行分组。这导致将分类为金属,绝缘子或两者之间的东西。金属可以进一步归类为费米液体,在费米表面具有明确定义的准粒子状态,也可以将其表现出非常规性的非纤维化液体。绝缘子以不同的形式出现,例如由于带隙,莫特绝缘子引起的带绝缘子,由于电子相互作用而导致的莫特绝缘子,由于无序诱导的干扰效应而引起的安德森绝缘子以及电荷转移的绝缘子,在这些原子之间电子传递。在开始时,目前尚不清楚哪些条件盛行。时间晶体即使在最低的能量状态也表现出运动,而隐藏状态在热平衡中无法实现,但可以通过光激发或其他方式诱导。微相分离涉及统一系统中的不同相,并且链式状态在高温和压力下结合了固体和液体性能。其他现象包括具有自发性应变的铁弹性状态,通过明显质量连接的光子分子,在极高压力下退化的物质以及各种假设状态(如夸克物质,奇怪的物质和颜色玻璃凝)。此外,已经提出了颜色的超导性和夸克 - 格隆血浆,其中提出了夸克可以在gluons海洋中独立移动的夸克。这些阶段通常涉及高能条件,例如在恒星内部或早期宇宙中发现的条件。随着宇宙的扩展,温度和密度降低,引力开始分离,这种现象被称为对称性破裂。