过去几十年来深度学习技术的发展和改进为高能物理学的算法方法创造了新的机会。尤其是,深度学习导致了算法识别算法的性能的显着进步,当在孔子大型强子撞机(例如cern the Cern the Colling collider)中产生时,由夸克或gluon碎片形成的结构。在本博士学位论文中,我们着重于深度学习方法,以增强CMS实验中喷气风味识别算法的性能。我们旨在通过改善模型鲁棒性来扩展其功能,以应对可能应用于算法使用的变量的变化。此外,通过扩展其最初的任务,我们为将来的研究带来了新的机会。首先,我们在创建保持喷气机结构的深神经网络的背景下探索变压器体系结构。我们建立了两个模型,其性能和计算成本为现场设定了新的最新技术。第二,我们基于对抗性攻击引入了一种数据不足的训练方法,从而提高了模型的稳健性,以防止输入变量的分布变化。增强鲁棒性对于改善校准后的模型性能是必要的。最后,我们成功地扩展了算法的任务以识别Hadronic Taus并估计喷气能量校正和分辨率。此外,我们介绍了奇怪喷气机的识别,这是LHC实验的第一个。最终,这项博士学位的工作导致创建了一类新的模型,具有改进的建筑,培训方法以及人工神经网络可能实现的范围的扩大范围。最终的模型(称为Upart)是LHC的CMS实验的JET识别的最新模型。通过源自奇怪夸克的喷气机的识别是LHC的第一个,一旦校准了新模型,就可以追求针对包含这种类型喷气的最终状态的新分析。
主要关键词