我们描述了一种从聚合图统计数据(而不是图邻接矩阵)学习深度图生成模型 (GGM) 的新设置。匹配观察到的训练图的统计数据是学习传统 GGM(例如 BTER、Chung-Lu 和 Erdos-Renyi 模型)的主要方法。隐私研究人员已提出从图统计数据中学习作为保护隐私的一种方式。我们开发了一种架构来训练深度 GGM 以匹配统计数据,同时保留局部差异隐私保证。对 8 个数据集的实证评估表明,当两者都仅从图统计数据中学习时,我们的深度 GGM 比传统的非神经 GGM 生成更逼真的图。我们还将仅在统计数据上训练的深度 GGM 与在整个邻接矩阵上训练的最先进的深度 GGM 进行了比较。结果表明,图统计数据通常足以构建具有竞争力的深度 GGM,该深度 GGM 可生成逼真的图,同时保护本地隐私。
探索人脑的复杂结构对于理解大脑功能和诊断脑部疾病至关重要。得益于神经成像技术的进步,一种新方法已经出现,该方法涉及将人脑建模为图结构模式,其中不同的大脑区域表示为节点,这些区域之间的功能关系表示为边。此外,图神经网络(GNN)在挖掘图结构数据方面表现出显着优势。开发 GNN 来学习脑图表征以进行脑部疾病分析最近引起了越来越多的关注。然而,缺乏系统的调查工作来总结该领域的当前研究方法。在本文中,我们旨在通过回顾利用 GNN 的脑图学习工作来弥补这一空白。我们首先介绍基于常见神经成像数据的脑图建模过程。随后,我们根据生成的脑图类型和目标研究问题对当前的作品进行系统分类。为了让更多感兴趣的研究人员能够接触到这项研究,我们概述了代表性方法和常用数据集,以及它们的实现来源。最后,我们介绍了对未来研究方向的见解。本次调查的存储库位于 https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs。
大型模型已成为人工智能,尤其是机器学习的最新开创性成就。但是,在图形方面,大型模型没有取得与其他领域相同的成功水平,例如自然语言处理和计算机视觉。为了促进将大型模型推向向前的大型模型,我们提出了一份透视论文,以讨论与开发大图模型1相关的挑战和机会。首先,我们讨论大图模型的所需特征。然后,我们从三个关键角度提出了详细的讨论:表示基础,图形数据和图形模型。在每个类别中,我们提供了最新进步的简要概述,并强调了剩余的挑战以及我们的愿景。最后,我们讨论了大图模型的宝贵应用。我们认为,这种观点可以鼓励对大型图模型进行进一步的调查,最终使我们更靠近人工通用情报(AGI)。据我们所知,我们是第一个全面研究大型图模型的人。
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
最近,在广泛的图形挖掘任务中深入研究并应用了预训练和微调图神经网络的范式。它的成功通常是对训练和下游数据集之间的结构一致性的表现,但是,在许多现实世界中,这并不成立。现有的作品表明,在使用香草微调策略时,预训练和下游图之间的结构差异显着限制了转移性。这种差异导致模型过度适应预训练图,并在捕获下游图的结构特性时造成困难。在本文中,我们将结构差异的基本原因确定为前训练和下游图之间生成模式的差异。此外,我们建议G-T Uning保留下游图的生成模式。给定下游图G,核心思想是调整预训练的GNN,以便它可以重建G graphon w的生成模式。但是,已知Graphon的确切重新构造在计算上是昂贵的。为了克服这一挑战,我们提供了一个理论分析,该分析建立了一组替代图形子的存在,称为任何给定的Graphon。通过利用这些图形碱基的线性组合,我们可以有效地近似w。这一理论发现构成了我们模型的基础,因为它可以有效地学习图形碱基及其相关系数。与现有的al-gorithm相比,G-T Uning在7个内域和7个室外转移学习实验中表现出一致的性能提高。
1 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学与艺术学院数学系,拉比格 21911,沙特阿拉伯;abdulnadimkhan@gmail.com 2 代数结构与应用研究组,阿卜杜勒阿齐兹国王大学科学学院数学系,吉达 21589,沙特阿拉伯;analahmadi@kau.edu.sa (ANA);whbasaffar@kau.edu.sa (WB);jwph@sussex.ac.uk (JWPH);hashoaib@kau.edu.sa (HS) 3 弗林德斯大学科学与工程学院,阿德莱德,SA 5001,澳大利亚; david.glynn@flinders.edu.au 4 Dhirubhai Ambani 信息与通信技术研究所,Gandhinagar 382007,古吉拉特邦,印度;mankg@computer.org 5 I2M,(法国国立科学研究院,艾克斯-马赛大学,马赛中央理工学院),163 Avenue de Luminy,13009 马赛,法国 * 通讯地址:arifraza03@gmail.com(MAR);patrick.sole@telecom-paris.fr(PS)
图形是一种无处不在的数据结构,可为具有交互的对象提供强大的建模。得益于人工智能和机器学习的最新进展,图形数据挖掘技术取得了快速进步。另一方面,公共卫生领域的研究和临床实践产生了大量相互关联的数据,而对现代图形挖掘原理和技术的探索仍然相当有限。在本次演讲中,我将介绍我们在医疗保健图形数据挖掘方面的研究愿景和议程,然后介绍我们在挖掘大脑网络、EHR 网络和移动网络方面取得的最新进展。最后,我将讨论未来方向,这些方向可以从与 BIOS 研究人员的进一步合作中受益。杨博士可以与教师、博士后和学生见面。如果有兴趣,请在 2022 年 10 月 5 日之前联系 Porchia Arnold(Porchia.Arnold@emory.edu)。
图论是数学领域图论所涵盖的主题之一,图论是由节点(有时称为顶点)通过边连接的数学结构。图论提供了一种在神经科学领域研究大脑中错综复杂的神经元互连网络的方法。在大脑网络图中,神经元由节点表示,它们的连接由边表示。研究人员可以使用图论技术来表征大脑网络的拓扑结构,并通过将网络可视化为图形来精确定位连接模式。为什么在神经科学中使用图论?图论是研究大脑组成和运作的越来越重要的工具。大脑由一个复杂的互连神经元网络组成,图论提供了一种理解该网络的技术,将其可视化为一个图形,其中神经元充当节点,它们之间的连接充当边。神经科学家可以使用图论来测量大脑网络的度分布、聚类系数和路径长度。这些特征揭示了大脑如何传递和处理信息。例如,研究表明,人类大脑具有小世界网络特征,包括高度的局部聚类和短路径
虽然消息传递图神经网络会导致信息丰富的节点嵌入,但它们可能无法描述图的拓扑特性。为此,节点滤波已被广泛用作使用持久图获得图的拓扑信息的一种尝试。然而,这些尝试面临着失去节点 - 床上用品信息的问题,这反过来又阻止了它们提供更具表现力的图表。为了解决这个问题,我们将重点转移到边缘效果上,并引入了一种新颖的基于边缘的持久性持续图,称为拓扑边缘图(TED),该图被数学证明可以保留节点嵌入信息以及包含其他拓扑信息。要实现TED,我们提出了一种基于神经网络的算法,名为“线图越vietoris-rips”(LGVR)持久图,该图通过将图形转换为其线图来提取边缘信息。通过LGVR,我们提供了两个模型框架,可以应用于任何传递GNN的消息,并证明它们比Weisfeiler-Lehman型着色更强大。最后,我们从经验上验证了模型在几种图形分类和回归基准上的出色性能。关键字:图形神经网络,持久图,拓扑数据分析,Weisfeiler-Lehman测试,越野透 - rips过滤