摘要。本文介绍了机器学习技术的新颖使用,以识别分散能源系统领域内可再生微电网中的故障。该研究研究了机器学习模型在识别动态和可变微电网环境中异常的有效性。它利用一个综合数据集,其中包括太阳能,风能和水力发电,能源存储状态和故障指示器等参数。调查表明,与常规的基于规则的方法相比,在识别故障的识别优势方面具有94%的精度,这表明了机器学习的优越性,该方法的准确率为80%。精确度和召回措施强调了机器学习模型的均衡性能,降低了误报和假否定性,并保证了精确的问题检测。断层对微电网效率的影响大大降低,在断层情况下仅记录了2%,这表明模型维持有效的能量供应的能力。一项比较研究表明,与常规技术相比,准确性提高了14%,强调了自适应和数据驱动方法在识别复杂的断层模式方面的益处。灵敏度研究验证了机器学习模型的弹性,证明了它们适应不同设置的能力。模型的实际应用通过模拟
摘要 本研究重点研究和使用机器学习 (ML) 方法来识别可再生微电网中的故障。它强调了与这些动态能源系统相关的困难和复杂性。对从太阳能和风能生产、电池存储状态、故障信号和机器学习模型性能中获得的实际数据的检查突出了可再生微电网中故障检测技术的复杂性。对可再生能源生产数据的分析表明,太阳能和风能的输出存在波动,突出了某些时间段内约 5-10% 的差异,从而说明了可再生能源的间歇性特性。同时,微电网内电池中存储的能量在时间间隔内逐渐下降约 3-5%,表明可能对系统稳定性产生影响。故障检测信号显示出不稳定的模式,这强调了在系统内部查找和分类问题所涉及的复杂性。对机器学习模型的评估(包括监督和无监督学习方法)揭示了许多性能指标。监督模型的准确率更高,通常在 85% 到 90% 之间。但是,它们容易偶尔出现错误分类。相比之下,无监督模型的准确率中等,通常在 75% 到 80% 之间。它们在检测故障方面表现出灵活性,但其精度有限。该研究强调需要结合使用监督和无监督机器学习模型来提高可再生微电网故障检测的准确性。这些结果为了解故障检测程序的复杂性和困难性提供了宝贵的见解,这可能有助于进一步提高可再生微电网系统的可靠性和耐用性。
摘要。本研究探讨了在智能电网中使用模糊逻辑创建和执行能源管理方法,目的是有效地整合可再生能源。该研究采用了经验数据,包括可再生能源生产信息、能源使用变化、电池存储的当前状态以及采取的控制措施。数据分析表明,可再生能源存在显著差异,即太阳能从 350 千瓦到 410 千瓦,风能从 180 千瓦到 220 千瓦,水能从 120 千瓦到 150 千瓦。不同部门的能源消耗呈现出不同的模式。住宅消费从 250 千瓦到 275 千瓦,工业需求从 300 千瓦增加到 330 千瓦,商业消费从 200 千瓦波动到 225 千瓦。电池存储状态出现变化,电池1从150 kWh增加到165 kWh,电池2在180 kWh和195 kWh之间波动,电池3维持在200 kWh至215 kWh的稳定范围内。基于模糊逻辑的控制动作的使用展示了灵活性,其中控制动作1的范围从0.6到0.8,控制动作2在0.5到0.7之间波动,控制动作3在0.6到0.9之间变化。该研究强调了基于模糊逻辑的能源管理系统的灵活性和快速响应。它可以实时调整控制动作以适应可再生能源发电、消费模式和电池存储的变化。这表明它有潜力优化能源流动并确保智能电网中的电网稳定性,促进可再生能源的有效整合。
摘要。本研究探讨了使用强化学习 (RL) 技术作为动态控制机制来增强智能电网系统中的储能管理。该研究旨在通过分析模拟智能电网场景中不同时间间隔收集的数据来优化储能操作的效率。对储能状态的评估显示,储能数量呈持续上升趋势,各个时间间隔的累计增长率为 30%。对电网供需的检查表明,能源持续不足,平均缺口为 15%,无法满足系统的要求。通过使用强化学习 (RL) 方法,该系统的累积奖励显著提高了 450%,证明了其获取知识和随时间调整行为的能力。该系统的行动表明战略发生了有目的的转变,75% 的实例涉及充电程序,强调了对节能和储能积累的承诺。尽管方法有所转变,但电网需求和供应之间的持续差距需要实施更精确的技术来实现有效的能源管理。研究结果强调了使用强化学习 (RL) 管理智能电网中能源存储的有效性。这种方法通过相应地改变行动来提高能源储备并优化能源存储。这些见解有助于推进自适应能源管理战略,从而发展可持续和有弹性的智能电网基础设施。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
随着互联网数据中心的兴起,数据中心的能耗和碳排放量正在迅速增加。为了降低数据中心的电力成本和碳排放,我们提出了一种优化方法,以减少地理分布的多个数据中心的电力成本和碳排放。在拟议的方法中,在整体操作成本中考虑了碳税,以优化碳排放。通过考虑可再生能源功率输出,局部电力和多个地理分布数据中心的碳排放的差异,可以完全利用计算工作负载的空间和时间灵活性,以实现更好的性能。此外,在优化中考虑了不间断电源(UPS)功率损失的非线性特征。为了验证提出的优化方法,使用现实数据对六种案例进行了模拟,结果证明该方法可以将运营成本降低4.93% - 12.7%,并将碳排放量最多减少10%。
应用 #3:旋转备用。许多微电网使用多台发电机来满足负载。由于微电网的负载会波动,因此发电机的大小通常以增量方式调整,以满足负载需求的“阶段”。如果总负载较低,则第一阶段的发电机容量启动。当需要额外电力时,第二阶段的发电机容量将启动。这种策略的问题在于,燃气发电机具有首选的效率窗口,以优化效率和燃料消耗。这个“最佳点”通常在 30% 到 40% 左右,因此如果第二台(或第三台)发电机循环开启和关闭,则会降低效率、消耗更多燃料、产生更多排放并造成设备磨损。将 BESS 与发电机结合可确保它在激活另一台发电机之前能够满足额外的边际负载。这有助于将发电机保持在最佳效率窗口内。(见图 7。)
电池储能系统(BES)与微电网(MG)的集成对于提高可再生能源(RES)集成的依赖能力和灵活性至关重要。但是,可靠性和监管政策是影响MG在市场上最佳运行的关键因素。这项研究旨在通过评估其在不同的监管框架下的性能,即馈电关税(fit),净计量(NM)和储能激励(ESI)来提高与RES和BES的MGS的可靠性。此外,动态拟合(D-FIT)框架也被用来提高MG的可靠性。人造蜜蜂菌落优化算法用于优化每种监管政策的BES大小,以最大程度地减少MG的总成本。每个策略都是根据问题中的特定约束来制定的。随后,为每个优化解决方案计算了负载期望损失(LOLE)和未提供的预期能量(EEN)的可靠性指标。此外,我们将动态热等级(DTR)系统集成到了我们提出的模型中,重点是系统组件评级的安全增强。研究发现,D拟合和标准拟合框架提供了最佳的可靠性水平,而ESI政策下的可靠性提高并不重要,因为MG的大部分需求都是由主要网格提供的。此外,研究表明,Eens的改善高于Lole,这表明安装BES会减少能量损失,而不是中断小时的数量。d-fit框架对两个可靠性指数都有重大的积极影响,与其他对Eens产生更大影响的框架不同。此外,与静态热等级(STR)系统相比,当考虑DTR系统时,我们已经注意到可靠性指数的次级稳定性提高。
本文旨在提出一些方案,使电网薄弱的干旱岛屿实现低碳足迹大规模海水淡化。通过这些方案,目标是重新配置并网风能/海水淡化系统,以实现大中型水生产。在此背景下,建议使用锂离子电池进行固定储能,并采用管理策略,以避免风能/海水淡化系统消耗与其连接的传统电网的能源。控制策略是基于确保风电场和电池提供的电力在系统的整个使用寿命期间与海水淡化厂的电力需求保持同步。在确定可再生能源系统的规模时,需要考虑风能的年际变化,并提出估算方法。案例研究以加那利群岛为中心,该地区特别容易受到气候变化的影响,但其风能开发利用具有得天独厚的优势。所得结果显示了所分析配置的最佳风电场和储能系统容量。所提出的方法可实现低碳运营足迹。如果今天实施控制策略,当前的电网限制和在仍然依赖化石燃料的社会背景下进行的系统生命周期评估表明,足迹可能减少 77.4%。然而,当风力涡轮机、电池和海水淡化厂的制造过程从碳中和社会中受益时,剩余的 22.6% 可能会在未来消除。