拓扑绝缘体的准一维纳米线是基于马约拉纳费米子的量子计算方案的超导混合架构的候选结构。本文研究了低温下选择性生长的 Bi 2 Te 3 拓扑绝缘体纳米带。纳米带定义在硅 (111) 衬底上深蚀刻的 Si 3 N 4 /SiO 2 纳米沟槽中,然后通过分子束外延进行选择性区域生长过程。选择性区域生长有利于提高器件质量,因为不需要进行后续制造来塑造纳米带。在这些无意 n 掺杂的 Bi 2 Te 3 拓扑绝缘体纳米带的扩散传输区域中,通过分析角度相关的通用电导波动谱来识别电子轨迹。当样品从垂直磁场方向倾斜到平行磁场方向时,这些高频电导调制与低频 Aharonov-Bohm 型振荡合并,后者源自沿纳米带周边的拓扑保护表面状态。对于 500 nm 宽的霍尔棒,在垂直磁场方向上可识别出低频 Shubnikov-de Haas 振荡。这揭示了一个拓扑、高迁移率、2D 传输通道,部分与材料本体分离。
由于仪器错误和软件限制,介电膜的折射率小于50 nm。在解决这个问题时,我们报告了椭圆测量Pro;可靠地评估折射率的可靠评估,以对沉积的各种热生长和化学蒸气,CVD,SI底物的介电膜,介电膜降低到约10 nm的厚度,并且我们在膜片界面界面上的当前了解的结果比较了结果。在所有研究的情况下,我们都发现界面区域在光学上与厚膜不同,并且精确的膜处理实质会改变界面区域的性质。-
研究了不同 Ge 含量的 Ge-rich-Al 2 O 3 薄膜在热刺激下光学和结构特性的演变。发现无论 Ge 含量如何,沉积态薄膜和在 TA 550 C 下退火的薄膜都是非晶态的。非晶态 Ge 团簇在 TA = 550 C 时形成,而在 TA = 600 C 时它们的结晶化最为明显,Ge 含量越高,退火时间越短。在 TA = 550 C 下退火的薄膜显示出宽广的光致发光光谱。其形状和强度取决于 Ge 含量和激发能量。在 TA = 600 C 下退火会导致出现额外的 UV 带,这些带源自 GeO x 相覆盖的 Ge 团簇的形成。对激发光谱进行了分析,以区分这些薄膜中的发光机制,并区分 Ge 相(非晶团簇和/或纳米晶体)中载流子复合的贡献以及通过界面或宿主缺陷的贡献。还估算了自由载流子的浓度和迁移率。
Axel Rouviller、Moussa Mezhoud、Alex Misiak、Meiling Zhang、Nicolas Chery 等人。磁控溅射生长的钒酸锶薄膜的结构、电学和光学特性。ACS Applied Electronic Materials,印刷中,6 (2),第 1318-1329 页。�10.1021/acsaelm.3c01642�。�hal-04400444�
摘要:这项研究评估了杂种sturgeon(Acipenser Gueldenstaedtii brandt×Acipenser baeri Brandt)的生产中的鱼类废水的影响长叶叶。“ Elizium”)。 经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。 在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。 鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。 然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。 相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。 在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。 接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。“ Elizium”)。经过测试的组合是富含三个微生物联盟之一的农场废水,鱼类废水,以及补充矿物质的鱼类废水。在补充矿物营养素的耕种中,从耕种的废水组合中获得了romaine生菜植物的最佳生长参数。鱼类农场废水的应用和有益的微生物伴侣积极地影响了生菜叶的新鲜重量和每植物的叶子数量。然而,用补充矿物质的废水喂养的植物的特征是叶尖燃烧的最强症状和最低的商业价值。相比之下,仅以鱼类废水或带有微生物的废水为食的植物的特征是高,相似的商业价值。在施用矿物质剂量增加后,有证据表明,在水培养莴苣培养中参与营养循环的微生物活性更大。接种液中的微生物结合和矿物质的应用显着增加了细菌的数量和活性。接种后7、14和21天。
光电特性,以太阳能电池为基础的应用,[1,2]发光设备[3,4]和光电探测器。[5-7]在这些应用中,通过真空沉积的合成是一种工业可伸缩,低成本和环保方法,以制造有效的,稳定和耐用的光电设备。[8–11]此外,已经通过不同的途径[6,12-14]实现了OMHP的各向异性纳米结构,例如纳米棒,纳米线或纳米片,可以将模板和化学物质的生长(例如第一次使用)纳入模板和化学构造的模拟结构(15])或凹槽[17,18]在其内部生长OMHP,而第二种是使用溶液合成方法来控制生长,例如表面活性剂或阴离子 - 交换反应等。[12,19]这些半导体各向异性纳米结构的一个关键特征是它们的极化 - 敏感的光电子响应。[15,20–22]尽管我们当前的许多设备都利用极化器来产生偏光光,但存在几个缺点,例如生成的束的强度降低和/或它们在微观和纳米级设备中的集成,从而限制了OptoelectRonic Systems的整体效率。[15,23]
本文描述了n型GaAs衬底的晶体取向对在不同n型GaAs衬底取向(即(100)、(311)A和(311)B GaAs面)上生长的厚度为120nm的磺化聚苯胺 (SPAN) 薄膜电学性能的影响。利用室温和不同温度(60−360 K)下的电流密度-电压 (J−V) 进行电学表征。从正向J−V特性中提取了理想因子 (n)、肖特基势垒高度 (Φb) 和活化能 (Ea)。从J−V结果可知,SPAN/(311)B GaAs混合器件在0.5 V时的整流值高于在(100)和(311)A GaAs面上生长的SPAN的整流值。此外,随着这三个异质结器件的温度升高,Φ b 的值增加,n 下降,E a 上升。E a 测量表明,SPAN/(311)B n 型 GaAs 异质结构的 E a 低于在 (100) 和 (311)A n 型 GaAs 平面上生长的 SPAN 样品。这可能与 SPAN/(311)B 中的缺陷数量低于其他两个样品有关。这些结果使得在高指数 GaAs 平面上生长的厚度为 120 nm 的 SPAN 成为未来器件应用的有趣混合器件。
本文对在独立衬底上生长的 GaN 外延层上的 Ni 肖特基势垒进行了表征。首先,通过对裸材料进行透射电子显微镜 (TEM) 图像和导电原子力显微镜 (C-AFM) 的纳米级电学分析,可以看到晶体中的结构缺陷以及电流传导的局部不均匀性。在外延层上制造的 Ni/GaN 垂直肖特基二极管的正向电流-电压 (IV) 特性给出的肖特基势垒高度平均值为 0.79 eV,理想因子为 1.14。对一组二极管的统计分析,结合温度依赖性测量,证实了在该材料中形成了非均质肖特基势垒。从 Φ B 与 n 的关系图中可以估算出接近 0.9 eV 的理想均质势垒,与通过电容-电压 (C – V) 分析推断出的势垒相似。通过 C-AFM 获得的局部 IV 曲线显示了电流传导开始点的不均匀分布,这又类似于在宏观肖特基二极管中观察到的电流传导开始点。最后,在不同温度下获得了在无缺陷区域制造的二极管的反向特性,并通过热电子场发射 (TFE) 模型描述了其行为。
图 3:(a) 和 (b) 通过对 1 nm 和 2 nm 厚的 a-Si 进行去湿处理获得的 Si NC 的 SEM 图像,显示 NC 的尺寸均匀;(c) 从 1 nm 厚的 a-Si 获得的单个 NC 的 TEM 横截面图像。插图中给出了图像的 FFT 和 NC 的缩放。
[5] K.J. Chhen,O.Häberlen,A。Flee,Sweep Linen Tsai,T。Ueda,Y。Uemoto,Y。Wu,Ieet Trans。 电子设备64,(2017)779。 [6] Y. Sun,X Age,Yeng,J Lu,X Tian,K Wei,H Wu,W.Wang,X。Franumer和G. Zhang,Electronics,vol。 8,不。 5,pp。 575,(2019)[7] j。 Y. Zhang,M。Sun,D。Piedra。 SCI。 半座。 Process。,78,75-84,(2018)。 Y. Zhang。 Sun,M。Liu,D。Piedra。 物理。 Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。[5] K.J.Chhen,O.Häberlen,A。Flee,Sweep Linen Tsai,T。Ueda,Y。Uemoto,Y。Wu,Ieet Trans。电子设备64,(2017)779。[6] Y.Sun,X Age,Yeng,J Lu,X Tian,K Wei,H Wu,W.Wang,X。Franumer和G. Zhang,Electronics,vol。8,不。5,pp。575,(2019)[7] j。 Y. Zhang,M。Sun,D。Piedra。SCI。 半座。 Process。,78,75-84,(2018)。 Y. Zhang。 Sun,M。Liu,D。Piedra。 物理。 Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。SCI。半座。Process。,78,75-84,(2018)。Y. Zhang。 Sun,M。Liu,D。Piedra。物理。Lett。 110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。Lett。110,193506(2017)。 F. Roccafort,F。Giannazzo,A SCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。110,193506(2017)。F. Roccafort,F。Giannazzo,ASCI。 半座。 过程。 94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。SCI。半座。过程。94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。 郑,Pr。佩里。 8,pp。 74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。94,164(2019)[10] K. Fu,H。Fu,H。Huang,T.-H。杨,C.-y。郑,Pr。佩里。8,pp。74-83,2020 [11] L. Sang,B。Ren。 物理。 Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。74-83,2020 [11] L. Sang,B。Ren。物理。Lett。 111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。Lett。111,12102(2017)。 [12] St. Li,B。Ercan,C。Director,H。Icda, 电子。 dev。 69,4206(2022)。 G. Giannazzo,F。Giannazza, 固体状态A,215)(2018年),1700613。 [14] P.V. Ray,C。Raynaud,C。Sound,A.J.E。111,12102(2017)。[12] St. Li,B。Ercan,C。Director,H。Icda,电子。dev。69,4206(2022)。G. Giannazzo,F。Giannazza,固体状态A,215)(2018年),1700613。[14] P.V.Ray,C。Raynaud,C。Sound,A.J.E。Ray,C。Raynaud,C。Sound,A.J.E。no,H。Morel,L.V。Phung,T.H。 非政府组织,P.D。 Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。 J. 128,(2022)1055。 [15] A.Sanduplata,S。Alummaran,G.I。 ng,K。Ranjan。 物理。 展开。 13,074001(2020)。 [16] Z. Shi,X。Xiang,H。Zhang,Q.。 He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。 SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。Phung,T.H。非政府组织,P.D。 Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。 J. 128,(2022)1055。 [15] A.Sanduplata,S。Alummaran,G.I。 ng,K。Ranjan。 物理。 展开。 13,074001(2020)。 [16] Z. Shi,X。Xiang,H。Zhang,Q.。 He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。 SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。非政府组织,P.D。Mierry,E。FrayersH. Maher,J。Tasselli,K。Sub-Morease,Y。Cordier,D。Plannon,Microelectron。J.128,(2022)1055。[15] A.Sanduplata,S。Alummaran,G.I。ng,K。Ranjan。物理。展开。13,074001(2020)。[16] Z. Shi,X。Xiang,H。Zhang,Q.。He,G。Jian,K。Zho,X。Zho,Xing,G。Xu,Smicond。SCI。 树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。SCI。树。 37(2022)065010。 [17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。 电子。 dev。 69,1938(2022)。 [18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。 iRet,t。 Calsounis,M。Charles,N。Rohat,C。Snails,V。 [19] T.H. ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G. 谴责,F。Roccafort,物理。 状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。 冲浪。 SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。树。37(2022)065010。[17] X. Liu,F。Lin,F。Li,Y。Ship,H.C。 Kuo,IEEE Trans。电子。dev。69,1938(2022)。[18] V. Maurya,J。Buckley,D。Alquier,H。Haas,M.R。iRet,t。Calsounis,M。Charles,N。Rohat,C。Snails,V。[19] T.H.ngo,R。Country,E。Frays,H。Cauveau,St.Hengoon,B。Damilano,F。Ford,B。Beaumont,J.P。G. G. Greco,Franco,P。Grzanka,M。Leszczynski,C。Youth,G.G. G.G.谴责,F。Roccafort,物理。状态实体A,212(2015)1091-1098 [21] G. Greco,F。Iucolano,C。Bongs,F。Giannazzo,M。Krysko,M。Leszzynski,F。Roccafort,Appl。冲浪。SCI。 314(2014)546–551。 https://doi.org/10.1016/j.apsusc。 SCI。 SCI。SCI。314(2014)546–551。https://doi.org/10.1016/j.apsusc。 SCI。 SCI。https://doi.org/10.1016/j.apsusc。SCI。 SCI。SCI。SCI。SCI。F. Roccafort,F。Giannazzo,A半座。过程。94(2019)164–170。 https://doi.org/10.1016/j.mssp。 [23] R. T. Tung,Mater。 Eng。,R。35.1(2001)。 JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。 物理。 70,7403(1991)。 [25] R. F. F. SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。94(2019)164–170。https://doi.org/10.1016/j.mssp。 [23] R. T. Tung,Mater。 Eng。,R。35.1(2001)。 JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。 物理。 70,7403(1991)。 [25] R. F. F. SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。https://doi.org/10.1016/j.mssp。[23] R. T. Tung,Mater。Eng。,R。35.1(2001)。JP [24] J. P. Sun,R。M。R. Pinto和W. R. Graham,J。Apple。物理。70,7403(1991)。[25] R. F. F.SCI。 树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。SCI。树。 B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。 物理。 93,9137(2003)。 F. Roccafort,G。Greco,P。 冲浪。 SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。树。B 15,1221(1997)[26] F. Roccaforte,F。Via,V。Raineri,R。Pierobon和E. Zanoni,J。Appl。物理。93,9137(2003)。F. Roccafort,G。Greco,P。冲浪。SCI。 606(2022)154896 [28] G. Greek,P。 物理。 129(2021)234501。 M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。 d:应用。 物理。 54(2021),055101。 F. A. A. Padovani和R. Stratton,固态。 9,(1966)695 [31] H. Kim; J. Electron。 mater。 50,(2021)6688–6707。SCI。606(2022)154896 [28] G. Greek,P。物理。129(2021)234501。M. Vivona。 G. G. G. Belocchi,L。Zumbo,S。d:应用。物理。54(2021),055101。F. A. A. Padovani和R. Stratton,固态。9,(1966)695 [31] H. Kim; J. Electron。mater。50,(2021)6688–6707。