摘要:核糖开关驻留在RNA的未翻译区域,并通过小分子的结合来调节与必需代谢物的生物合成有关的基因。自从本世纪初的发现以来,核糖开关被视为潜在的抗菌靶标。使用X射线晶体学指导的片段筛选,高通量筛选和有理配体设计,已经确定了针对各种核糖开关的铅化合物。在这里,我们回顾硫胺素焦磷酸盐(TPP),氟单核苷酸(FMN),GLMS,Guanine和其他核糖开关的当前状态和适用性,作为抗菌靶标,并在生物学环境中进行讨论。此外,我们重点介绍了核糖开关药物发现中的挑战,并强调开发核糖开关的特定高通量筛选方法的必要性。
脱氧核糖核酸或DNA是一种双螺旋化合物,大多数人体都包含在细胞核的所有染色体中。DNA是遗传密码,该DNA的某些部分称为基因,这些基因传递了用于制造蛋白质的信息,这就是构成您的性状的原因。现在,核糖核酸(RNA)基本上是单链DNA,并且有3种不同类型的DNA都用于读取DNA。它从RNA聚合酶开始,该聚合酶沿着DNA的链移动,并使用核中剩余的游离核苷酸创建信使RNA,这是转录中的这一过程。在DNA核苷酸中成对称为碱基对;腺嘌呤与胸腺嘧啶,鸟嘌呤与胞嘧啶。当RNA聚合酶读取DNA时,它将其分为一半(打破碱基对),并添加新的,相应的核苷酸,对于胞嘧啶,它会添加鸟嘌呤,对于鸟嘌呤,它会添加胞嘧啶,为胸腺氨酸添加腺嘌呤,添加腺嘌呤,最后添加腺嘌呤,以添加Uracine。uracil是一种新化合物,用于构建RNA,但是DNA不包括它,就像RNA不包含胸腺素一样,换句话说,它们相互替代。所有这些后,使信使RNA准备转变为蛋白质,它必须从细胞中的细胞核和核糖体扫描它的细胞质中传播。在核糖体中,有称为转移RNA分子的分子,一旦读取了信使RNA,一次3个核苷酸,这些分子以链的形式释放氨基酸。这条氨基酸形成了复杂的形状,形成蛋白质,从而使其具有某些生物特征。
概率的父母之间没有血缘关系。确认了II型中枢神经系统的诊断,通常会提取和测序他的父母的血液基因组DNA及其父母的血液基因组DNA。遗传测试结果显示两个可疑的纯合致病突变。一个突变是C.1456 T> G P.Y486D纯合突变。Y486D位于外显子5上,将1,456胸腺素(T)改为鸟嘌呤(G),并将残留物486酪氨酸(Tyr)变成天冬氨酸(ASP)。他的父母是C.1456 T> G P.Y486D杂合载体(补充数字S1A – C)。另一个突变是c.211g> a p.g71r纯合突变。g71r位于外显子1中,将211鸟嘌呤(g)突变为腺嘌呤(a),并将残基71从甘氨酸(Gly)变化为精氨酸(ARG)。他的父亲是C.211G> p.g71r纯合子载体,没有任何症状,他的母亲是杂合携带者(补充数据S1D – F)。
常见 B 型 DNA 和其他 DNA 构象之间的动态结构转变为基因表达提供了额外的调控层。1–4 G-四链体 (G4) 和 i-基序 (iM) 是两类重要的非规范 DNA 结构,分别在人类基因组中某些富含鸟嘌呤和胞嘧啶的区域形成。由于 iM 结构是通过堆叠插入的半质子化胞嘧啶碱基对 (C+:C) 形成的,因此最初认为 iM 的形成需要弱酸性 pH 值,然而,现在已经确定这些结构是在细胞环境中的生理 pH 值下形成的。5,6 G4 结构由 pi 堆叠的平面 G 四联体形成,其中每个 G 四联体由四个鸟嘌呤碱基组成,通过 Hoogsteen 氢键结合在一起,并通过生理相关的阳离子进一步稳定。 7–10 G4 和 iM 折叠机制已用于预测它们在基因组中形成的倾向以及它们在调控区域中的过度表达。5,11 此外,它们的结构特征
HEK 293细胞用荧光素酶构建体,其中含有鸟嘌呤适体的核糖开关(左),腺嘌呤适体(中间)或TPP Aptamers(右)。转染的细胞用适体配体以指定的剂量处理。图显示了开关对不同适体粘合剂的剂量反应。con 1是没有核糖开关盒的控制构建体。
RAS 蛋白是小分子鸟嘌呤核苷酸结合蛋白,可在非活性 GDP 结合状态和活性 GTP 结合状态之间循环。RAS 位于质膜内层,在生长因子的细胞外刺激下,通过受体酪氨酸激酶 (RTK)(如表皮生长因子受体 (EGFR))的上游信号传导将其激活(图 1a)。生长因子激活 RTK 会诱导其 C 末端酪氨酸 (Tyr) 残基的自身磷酸化。这些磷酸酪氨酸残基可作为两种含 SH2 的衔接蛋白 SHC 和 GRB2 的结合位点,而 SHC 和 GRB2 又会将鸟嘌呤核苷酸交换因子 SOS 募集到膜上。SOS 与 RAS 共定位会导致 RAS 上的 GDP 与 GTP 交换,并激活下游信号传导(Aronheim 等人,1994 年)。然后,通过 RAS 的信号传导被 GTPase 活化蛋白 (GAP) 的活性终止,GAP 刺激 GTP 水解为 GDP,并释放磷酸盐 (Trahey & McCormick 1987, Xu et al. 1990)。在活性状态下,RAS 通过多种下游通路发出信号,包括 RAF/MEK/ERK 和 PI3K/AKT 等,以调节转录、翻译、增殖和存活(详见 Downward 2003)。
DNA甲基化是调节细胞重编程和发育的必要表观遗传机制。使用全基因组纤维纤维测序的研究表明,人类和小鼠细胞和组织中的脱离DNA甲基甲基景观。然而,导致细胞类型之间巨核尺度甲基组模式差异的因素仍然鲜为人知。通过分析公共可用的258个人和301个小鼠全基因组纤维纤维测序数据集,我们透露,富含鸟嘌呤和胞嘧啶的基因组区域(位于核中心附近)在胚胎和生殖线重编程过程中都非常容易受到全球DNA脱甲基化和甲基化事件的极大影响。更重要的是,我们发现在整体DNA甲基化过程中产生部分甲基化结构域的区域更有可能恢复全球DNA脱甲基化,含有高水平的腺嘌呤和胸腺素,并且与核层层相邻。受其鸟嘌呤感染的基因组区域的空间特性可能会影响参与DNA(DE)甲基化的分子的可及性。这些特性塑造了巨型尺度的DNA甲基化模式并随着细胞的分化而变化,从而导致细胞类型中不同的巨型尺度甲基甲基组模式的出现。
DNA:在细胞内发现的双链螺旋分子,其中包含生物体发育和功能所需的遗传信息。氢键连接嘌呤和嘧啶核苷酸碱基对,形成双螺旋结构。核苷酸:由DNA和RNA组成的分子,由含氮的核苷酸酶,磷酸基团和糖组成。DNA中的糖是脱氧核糖,而RNA中的糖为核糖。核碱酶:含氮分子,是核苷酸的组成部分。在DNA中,这些碱是腺嘌呤(a),胞嘧啶(C),鸟嘌呤(G)和胸腺素(T)。DNA碱基搭配在一起,连接了双螺旋的两个链。在DNA的正常情况下,腺嘌呤将与胸骨(A-T)配对,而胞嘧啶将与鸟嘌呤(G-C)搭配。在RNA中,胸腺氨酸被核碱尿嘧啶(U)取代。 核仁酶通常称为碱基。 嘌呤:在DNA和RNA中发现的两类核苷酸酶之一,其中包括腺嘌呤(a)和鸟嘌呤(G)。 嘧啶:在DNA和RNA中发现的两类核苷酸酶之一,其中包括胞嘧啶(C),胸腺嘧啶(T)和尿嘧啶(U)。 DNA聚合酶:在DNA复制过程中负责形成新的DNA副本的一类酶。 在DNA复制过程中,将一个双链DNA分子复制成两个相同的DNA分子。 此过程对于细胞分裂至关重要。 某些DNA聚合酶能够纠正错误,而另一些DNA聚合酶缺乏这种能力或显示误差校正减少。在RNA中,胸腺氨酸被核碱尿嘧啶(U)取代。核仁酶通常称为碱基。嘌呤:在DNA和RNA中发现的两类核苷酸酶之一,其中包括腺嘌呤(a)和鸟嘌呤(G)。嘧啶:在DNA和RNA中发现的两类核苷酸酶之一,其中包括胞嘧啶(C),胸腺嘧啶(T)和尿嘧啶(U)。DNA聚合酶:在DNA复制过程中负责形成新的DNA副本的一类酶。在DNA复制过程中,将一个双链DNA分子复制成两个相同的DNA分子。此过程对于细胞分裂至关重要。某些DNA聚合酶能够纠正错误,而另一些DNA聚合酶缺乏这种能力或显示误差校正减少。转录:将DNA转录为RNA的细胞过程。RNA:一种核酸,其中包含从DNA复制的信息。虽然RNA具有许多功能,但其中许多与在细胞内生产蛋白质有关。翻译:使用RNA携带的遗传信息的细胞过程用于与细胞传达如何将氨基酸连接在一起形成蛋白质(多肽)。RNA序列(通过核糖体)在三个核苷酸的片段中读取,称为密码子,这对应于一个氨基酸。单个核苷酸的变化可能会导致氨基酸链和随后的蛋白质形成的变化。蛋白质:蛋白质是由氨基酸组成的分子,是身体结构的基础。蛋白质在酶,细胞因子和其他活组织中发现。