针对能源互联网的重要组成部分综合能源微网,本文构建了独立模式下综合能源微网多储能系统优化配置模型,提出了包含储能系统和储热系统额定功率及容量的配置方法。储能系统模型包括供暖期和非供暖期蓄电池寿命估算。模型以经济性为指标,考虑热电机组热电耦合相关约束,包括热电平衡、机组爬升、储能系统及自给概率等,并采用基于机组出力和储能系统功率分配策略的菌落趋化性(BCC)算法模型进行求解。讨论了搭载储能系统的热电联产机组的运行特性。结果表明,提出的多储能系统配置方法无论在供暖期还是非供暖期均具有显著的经济效益和环境效益,并促进了风电的消纳。
摘要:本文介绍了一种采用突跳屈曲 (STB) 机制进行频率上转换 (FuC) 的压电能量收集器。该收集器由两个主要部件组成:双稳态机械结构和一个压电悬臂梁。该装置采用分析方法和数值模拟设计。制造了一个概念验证原型并在低频机械激励下进行了测试。实验结果表明,如果从第二个稳定配置回到未变形配置,如果诱发 STB,则可以获得 FuC,并且梁的响应会呈现很宽范围内的频率分量,即使悬臂梁的共振频率没有被激发。因此,结果与预期行为一致:如果强制处于第二个稳定配置的设备受到幅度超过阈值的低频激励,则会触发 STB,随后的 FuC 会导致梁振动频率范围扩大,从而显著提高功率输出效率。通过使用最佳电阻负载作为 STB,从双稳态机制的一个稳定配置触发另一个稳定配置,可获得 4 mW 的最大功率;如果采用带储能电容器的整流电路,可获得 4.5 µJ 的最大能量。
翼梁,肋骨和字符串也是由支柱支撑的版本。的差异在于一个事实,即通过张力吸收一部分载荷(如果存在高翼的配置,如图2所示)或压缩(如果是低翼构造)。这意味着机翼的结构可以更轻,甚至可能在相同数量的质量方面更大[1]。这意味着在结构上更轻,更长,更薄的翅膀具有较高的细长度,从而提高了空气动力学效率或L/D比。此外,提高的效率将意味着飞机还需要减少燃料,从而减轻重量。,尽管这种配置也有一些缺点,因为支撑杆本身也增加了飞机的质量,并增加了飞机湿润的表面,从而增加了其寄生虫的阻力。也必须注意干扰和添加的结构复杂性,并且这种配置可能导致的空气弹性问题[2]。对于短途飞机来说,这种设计特别有趣,其中更具空气动力的机翼可以提供更高的攀爬速度和更滑的CD(连续下降)。
类别摘要 配置 此类别中的弱点通常在软件配置期间引入。 数据处理问题 此类别中的弱点通常出现在处理数据的功能中。 数字错误 此类别中的弱点与数字的不正确计算或转换有关。 安全功能 此类别中的弱点与身份验证、访问控制、机密性、加密和权限管理等主题有关。(软件安全不是安全软件。) 时间和状态 此类别中的弱点与在支持多个系统、进程或线程同时或近乎同时计算的环境中对时间和状态的不正确管理有关。 错误条件、返回值、状态代码
摘要:本研究旨在解决有源配电网(ADN)不稳定能源接入问题,包括频率调节困难、ADN 电压偏差增大、运行安全性和稳定性下降等。本研究建立了一个两阶段主要化配置模型来识别和理解波动性能源如何影响混合储能系统(HESS)。利用风能、太阳能和负荷的日预报数据来检查带有铅酸电池和超级电容器(SC)的 ADN 和 HESS。在这个规划阶段,综合成本、网络损耗和节点电压偏差被视为多目标优化模型中的最优目标,而改进的多目标优化粒子群方法用于求解容量配置的初始值。在运行阶段,以风电输出功率波动、HESS频率偏差等优化目标求解SC配置能力修正值,并利用加入混沌机制的量子粒子群算法对ADN中不同类型机组的输出进行进一步优化,基于案例33个节点实例进行仿真研究,确定最佳配置结果,仿真结果验证了模型的可行性。
摘要:本文介绍了配备两个升降副翼和一个电动机的小型无人机的飞行故障检测和基本重构。考虑的故障场景是直线平飞期间一个控制面卡在给定位置。故障检测采用多模型自适应估计解决,考虑无故障和故障(左或右表面卡住)系统模型。基本重构是为了稳定飞行免受大气干扰,在横向通道中应用剩余表面,并采用总能量控制概念将空速和高度保持在纵向通道中可接受的限度之间。在软件在环仿真中,故障检测和重构取得了令人满意的结果。
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。,量化了现实世界中两个部分之间的纠缠在与环境相互作用时的两部分,因为后者将跨边界的经典与quantum相关性混合在一起。在这里,我们使用混合状态的操作员空间纠缠频谱在此类开放系统中有效地量化量子相关性。如果系统具有固定的电荷,我们表明光谱值的一个子集编码不同的跨边界电荷配置之间的相干性。这些值的总和我们称为“配置连贯性”,可以用作跨边界的量化。至关重要的是,我们证明,对于非侵扰地图,例如,林金型的演变与Hermitian跳跃操作员,配置连贯性是纠缠的措施。此外,可以使用该州密度矩阵的张量净工作表示可以进行官能计算。我们展示了在存在下的链上移动的无旋转粒子的配置共同体。我们的方法可以在广泛的系统中量化连贯性和倾向,并激发有效的纠缠。
摘要:混合能源系统 (HES) 利用多种互补能源发电。最近,由于光伏 (PV) 模块和风力涡轮机成本的降低,这些类型的系统在经济上具有竞争力。在本研究中,应用数学规划模型来评估位于厄瓜多尔两个孤立地区的自治单位的技术经济可行性:第一,加拉帕戈斯省(亚热带岛屿),第二,莫罗纳圣地亚哥省(亚马逊热带森林)。这两个案例研究表明,HES 是减少农村对化石燃料依赖的潜在解决方案,也是将电力输送到厄瓜多尔孤立社区的可行机制。我们的结果表明,不仅从经济角度,而且从环境角度来看,对于加拉帕戈斯省而言,具有光伏-风能-电池配置且平准化能源成本 (LCOE) 等于 0.36 美元/千瓦时的混合能源系统是最佳能源供应系统。对于 Morona Santiago 的情况,采用光伏-柴油-电池配置且 LCOE 等于 0.37 美元/千瓦时的混合能源系统是最适合满足厄瓜多尔典型孤立社区负荷的配置。所提出的优化模型可用作决策支持工具,用于评估在任何其他位置实施自主 HES 项目的可行性。
纠缠是量子技术的关键资源,是令人兴奋的多体现象的根源。然而,当现实世界的量子系统与其环境相互作用时,量化其两部分之间的纠缠是一项挑战,因为后者将跨边界的经典关联与量子关联混合在一起。在这里,我们使用混合态的算子空间纠缠谱有效地量化了这种现实开放系统中的量子关联。如果系统具有固定电荷,我们表明谱值的子集编码了不同跨边界电荷配置之间的相干性。这些值的总和,我们称之为“配置相干性”,可用作跨边界相干性的量化器。至关重要的是,我们证明了对于纯度非增映射,例如具有 Hermitian 跳跃算子的 Lindblad 型演化,配置相干性是一种纠缠度量。此外,可以使用状态密度矩阵的张量网络表示有效地计算它。我们展示了在存在失相的情况下在链上移动的无自旋粒子的配置相干性。我们的方法可以量化广泛系统中的相干性和纠缠,并激发有效的纠缠检测。
摘要:本文通过考虑通过考虑量和使用时间(TOU)的电力速率选项来研究屋顶太阳能光伏(PV)和电池储能系统(BESS)的实用最佳尺寸的比较研究。两种系统配置仅PV和PV-Bess,通过最大程度地降低了四种电力速率选择的净电力成本,从而最佳尺寸。通过考虑电网限制,电力供电,救赎价值和PV和BESS的退化,负载和太阳能的实际年数据以及当前零件的市场价格来开发一个实用模型。检查了GCHS基于规则的能源管理系统,以控制PV,BES,负载和网格之间的功率流。进行了各种灵敏度分析,以检查网格约束和电力速率对电力成本和组件尺寸的影响。尽管通常针对任何案例研究开发了容量优化模型,但在本文中,澳大利亚的一个与网格连接的房屋被认为是案例系统。发现,与其他配置和选项相比,PV-Bess配置的TO-FLAT选项达到了最低的NPC。根据两个性能度量标准,与TOU-FLAT的PV-Bess配置分别获得了屋顶PV和BES的最佳能力:分别为9 kW和6 kWh:净现在成本和电力成本。