采用光学显微镜方法对二维 (2D) 材料中的缺陷进行纳米级表征是光子片上器件的关键步骤。为了提高分析吞吐量,最近开发了基于波导的片上成像平台。然而,它们固有的缺点是必须将 2D 材料从生长基底转移到成像芯片,这会引入污染,可能会改变表征结果。在这里,我们提出了一种独特的方法来规避这些不足,即直接在氮化硅芯片上生长一种广泛使用的 2D 材料(六方氮化硼,hBN),并对完整的原生材料中的缺陷进行光学表征。我们将直接生长方法与标准湿转移法进行了比较,并证实了直接生长的明显优势。虽然在当前工作中用 hBN 进行了演示,但该方法很容易扩展到其他 2D 材料。
六角形硝酸硼(HBN)中的颜色中心有利地结合了出色的光物理特性,并具有在高度紧凑的设备中积分的潜力。朝着可扩展集成的进展需要高量子效率和有效的光子收集。在这种情况下,我们比较了在两个不同的电磁环境中由电子辐照产生的单个HBN颜色中心的光学特征。我们跟踪我们在去角质晶体干燥之前和之后表征的良好识别发射器。此比较提供了有关其量子效率的信息 - 我们发现它们接近统一 - 以及它们在晶体中具有纳米精度的垂直位置,我们从薄片表面上发现了它们。我们的工作建议混合介电 - 金属平面结构是一个有效的量子发射器的有效工具,除了提高计数速率外,还可以在2D材料或平面光子结构中推广到其他发射器。
§ 金刚石、碳化硅(SiC)和六方氮化硼(hBN)拥有各种光学可及的自旋活性量子中心 § 在环境条件下具有优异的相干特性(“室温下的量子比特”) § 由于塞曼分裂,缺陷的能级结构对磁场高度敏感
我们创建了一套资源,用于基于健康脑网络 (HBN) 研究的公开扩散 MRI (dMRI) 数据开展研究。首先,我们将 HBN dMRI 数据 (N = 2747) 整理到脑成像数据结构中,并根据最佳实践对其进行预处理,包括去噪和校正运动效应、与磁化率相关的失真和涡流。预处理后可供分析的数据已公开。数据质量在 dMRI 分析中起着关键作用。为了优化 QC 并将其扩展到这个大型数据集,我们通过专家评分的小型数据子集和社区科学家评分的大型数据集的组合来训练神经网络。该网络在保留集 (ROC-AUC = 0.947) 上执行的 QC 与专家的 QC 高度一致。对神经网络的进一步分析表明,它依赖于与 QC 相关的图像特征。总而言之,这项工作既为推动大脑连接和儿童心理健康的跨诊断研究提供了资源,也为大型数据集的自动化质量控制建立了新的范式。
将范德华(VDW)材料集成到光子设备中,为许多新的量子和光电应用奠定了基础。尽管在VDW晶体的光子构建块的纳米化过程中取得了巨大进展,但仍然存在局限性,特别是在大面积设备和掩蔽中。在这里,我们将重点放在六角硼(HBN)作为VDW材料上,并提出了一种双蚀刻方法,该方法克服了与使用金属膜和基于抗拒膜的方法相关的问题。通过设计和制造一组功能性光子组件(包括波导,环谐振器和光子晶体腔)来证明开发方案的效率。通过在几个关键频谱范围内的光学表征来证明制造结构的功能。这些包括近红外和蓝色范围,其中HBN硼空缺(V b-)旋转缺陷分别和相干B中心量子发射器发射。双蚀刻方法可实现高质量因子光腔的制造,并构成了VDW材料片上整合的有希望的途径。
摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
极性子是轻质的准颗粒,可控制纳米级量子材料的光学响应,从而实现片上的通信和局部感应。在这里,我们报告了封装在六角硼(HBN)中的Magne offer-Nedral石墨烯中的Landau-Phonon Polariton(LPP)。这些准颗粒从石墨烯中的狄拉克磁饰模式与HBN中的双曲线声子极化模式的相互作用中脱颖而出。使用红外磁纳米镜检查,我们揭示了在量化的磁场处的真实空间中完全停止LPP传播的能力,违反了常规的光学选择规则。基于LPP的纳米镜检查还分别说明了两个基本多体现象:费米速度的恢复速度和依赖于场的磁性磁性。我们的结果突出了磁性调谐的狄拉克异质结构对精确的纳米级控制的潜力和光 - 物质相互作用的传感。
我们报告了通过二维半导体WS 2的范德华异质结构的能量转移机理和具有不同层间距离的石墨烯,这是通过六角硼硝化硼(HBN)的间隔层实现的。我们在0.5 nm至5.8 nm(0-16 HBN层)之间记录了层间距离处的光致发光和反射光谱。我们发现能量转移由光锥外部的状态支配,这表明了f的转移过程,并在0.5 nm的层间距离下右手过程的额外贡献。我们发现,可以使用最近报道的热载荷载载流子的f ister传递速率进行定量描述发光强度对层间距离的测量依赖性。在较小的层间距离处,实验观察到的转移速率超过了预测,此外,取决于过量的能量以及激发密度。由于f”机制的转移概率取决于电子孔对的动量,因此我们得出结论,在这些距离上,转移是由非省力的荷载载流子分布驱动的。
摘要:二维材料可访问光子学的最终物理限制,具有吸引人的超级合理光学组件(例如波格和调节剂)。特别是在单层半导管中,强烈的激子共振导致介电常数从正极到均匀的值急剧振荡。这种极端的光学响应使表面激子 - 磨牙能够引导可见光与原子薄层结合。然而,这种超薄波格 - 支持具有低配置的横向电(TE)模式,并且具有短传播的横向磁性(TM)模式。在这里,我们提出,包括单层WS 2和六角形硝酸硼(HBN)的现实分号 - 导管 - 隔离器 - 隔离器超晶格可以提高TE和TM模式的性质。与单个单层相比,分隔两个单层的1 nm HBN间隔物的异质结构可增强TE模式的配置,从1.2到0.5μm左右,而TM模式的平面外扩展则增加了25至50 Nm。我们提出了两个简单的添加性规则,用于在超薄纤维近似中有效的模式结构,用于异质结构,间隔厚度增加。堆栈 -
我们研究单层Rydberg状态的直接和间接磁脱糖,以及在外部平行电和磁场中的Xenes(硅,德国烯和Stanene)的双层异质结构,垂直于单层和异质结构。我们通过使用Rytova-keldysh的数值整合来计算Rydberg States,1 S,2 S,2 S,3 S,3 S和4 S的结合能,用于直接磁铁电位的电位,用于直接磁铁的潜力,以及Rytova-keldysh和rytova-keldysh和coulombys的潜力。后者允许了解筛查在Xenes中的作用。在外部垂直电场中,Xene单层的屈曲结构导致sublatices之间的潜在差异,从而使电子和孔质量调整磁性能量和磁性能量,以及磁磁相连的同系数(DMCS)。我们报告了电力和磁场对结合能和DMC的能量贡献。通过电力和磁场直接和间接杂志的能量贡献的可调性。还表明,直接激子的DMC可以通过电场调节,并且可以通过电场调谐间接磁性脱位的DMC,并通过HBN层的数量来操纵。因此,可以通过外部电气和磁场以及HBN层的数量来控制电子设备设计的可能性。Xenes单层和异质结构中磁性excitons的结合能和DMC的计算是新颖的,可以将其与实验结果进行比较。