由于其无限的增殖潜力、整倍体状态以及向任何细胞类型分化的能力,人类多能干细胞 (hPSC)(无论是胚胎细胞还是诱导细胞)在疾病建模和生产临床应用细胞方面具有巨大潜力 [ 1 – 3 ]。尽管已经建立了来自患有各种疾病的患者的许多 hPSC 系,但是针对某些病理或罕见基因突变生成 hPSC 系仍然具有挑战性。此外,个体间的遗传异质性可能导致生物学变异,从而使系间比较困难,尤其是来自健康对照和患者的 hPSC 之间的比较 [ 4 , 5 ]。对 hPSC 进行遗传操作的能力为我们引入、修改或校正突变以及生成遗传匹配的同基因对照系提供了机会,从而建立明确的基因型-表型关联 [ 6 , 7 ]。近年来,基于位点特异性核酸酶(包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),尤其是成簇的规律间隔短回文重复序列 (CRISPR) 系统)的技术已使 hPSC 的基因组工程变得十分灵活 [8,9]。然而,由于 hPSC 的固有特性,包括相对较差的转染效率和转染后存活率低、难以分离克隆群、优先选择和扩增非整倍体克隆以及自发细胞分化,hPSC 工程仍然具有挑战性。为了缓解这些问题,已经描述了几种用于产生各种不同诱变事件的方案 [10-14]。尽管人们投入了大量精力来改进产生转基因 hPSC 的方法程序,但只有少数研究
如今,人类多能干细胞 (hPSC) 经常用于基因编辑或细胞分选等极具挑战性的应用。在重新编程后,通过应用超低密度接种来产生新的 hPSC 系,使细胞处于压力之下。显然,需要一个稳定且精心组成的培养基环境来确保 hPSC 的存活和正常细胞生长,尤其是在压力实验条件下。细胞受益于恒定的营养和生长因子供应、稳定的 pH 值和低降解产物(例如乳酸或铵)的积累。在这里,我们开发了一种不含异种成分的新一代 hPSC 培养基,该培养基含有稳定的 FGF-2,可确保生长因子的稳定暴露水平,因此不仅可以提高 hPSC 的有效维持和扩增,还可以提高安全使用灵活喂养策略的可能性。当与额外的优化支持补充剂结合使用时,它可以提高细胞存活率和稳定细胞
摘要:人类多能干细胞 (hPSC) 衍生的神经元培养物已成为人类大脑电活动的模型。微电极阵列 (MEA) 可测量细胞培养物或组织的细胞外电位变化,并能够记录神经元网络活动。MEA 已应用于人类受试者和 hPSC 衍生的大脑模型。在这里,我们回顾了使用 MEA 对 hPSC 衍生的二维和三维大脑模型进行功能表征的文献,并在生理和病理背景下检查了它们的网络功能。我们还总结了人类大脑的 MEA 结果,并将其与有关 hPSC 衍生大脑模型的 MEA 记录的文献进行比较。MEA 记录显示二维 hPSC 衍生大脑模型中的网络活动与人类大脑相当,并揭示了疾病模型中与病理相关的变化。与二维模型相比,三维 hPSC 衍生模型(例如脑类器官)具有更相关的微环境、组织结构和对更复杂的网络活动进行建模的潜力。hPSC 衍生的大脑模型重现了人类大脑网络功能的许多方面并提供了有效的疾病模型,但这些方法需要分化方法、生物工程和可用的 MEA 技术方面的某些进步才能充分发挥其潜力。
现代基因组工程技术已经能够以有针对性的方式对哺乳动物细胞进行改造,从单核苷酸改变到插入更大的转基因有效载荷。然而,利用靶向核酸酶(如 CRISPR/Cas9)的方法依赖于细胞 DNA 修复机制进行同源定向修复介导的整合,需要产生暴露的 DNA 双链断裂 (DSB),在插入较大的 DNA 货物时效率极低,并且经常导致不必要的编辑结果 1–4 。人类多能干细胞 (hPSC) 通过整合治疗有效载荷基因并分化为所需的细胞类型,为细胞治疗应用提供了巨大的潜力 5–8 然而,hPSC 特别难以工程化,因为它们易受 p53 介导的 DNA 损伤反应诱导的细胞凋亡的影响 9,10 。丝氨酸整合酶(例如 BxbI)不依赖于细胞机制并且不被认为产生暴露的 DSB,因此最近它们已被用于成功地将大有效载荷整合到 hPSC 中,既直接整合到预先设计的着陆垫中 11-13 ,也与 Cas9 介导的靶向结合使用 14-16 。通过整合选择标记 11,17,18 ,可以生成 100% 工程化的 hPSC 群体,但是如果没有选择,报告的靶向效率仍然非常低,通常低于 1% 13,18 。许多应用将受益于 hPSC 中大有效载荷的更高整合效率,因此一直在努力开发更有效的 BxbI 蛋白,但是到目前为止,这些努力仅导致 hPSC 靶向效率达到 3.8% 16,19 。在本研究中,我们着手测试是否可以通过优化核苷酸序列、递送方法和抑制 p53 通路来提高 BxbI 整合酶在 hPSC 中的靶向效率。
无法治愈运动神经元(MN)疾病,例如肌萎缩性侧索硬化和脊柱肌肉萎缩。访问可靠的人类MN模型将是无价的,可以帮助发现疾病机制。晚期培养模型(例如脊髓器官)(SCO)包含各种组织特异性细胞类型,包括MN,神经胶质细胞和中间神经元,从而提高了其生理相关性。在这里,我们描述了STEMDIFF™脊髓器官分化套件,该套件从高效率上产生人类多能干细胞(HPSC)的SCO。我们的数据表明,STEMDIFF™脊髓器官分化套件可以产生来自多个HPSC系的MN,中间神经元和神经胶质细胞的SCO。与背侧前脑器官相比,这些HPSC衍生的SCO在明显更高的水平上表达了MN标记。此外,SCO在维持培养物中在4周内显示出自发的电生理结构,并在Brainphys™基于Brainphys™的培养基中成熟时显示出更多的爆发。综上所述,STEMDIFF™脊髓器官分化套件提供了一种强大的工具,可以生成功能性HPSC衍生的SCO,用于人类MN疾病的体外研究。
在人类心脏发生中如何相互作用仍然难以捉摸。在这里,我们发现人类特异性心脏制动 lncRNA 1 (HBL1) 与人类多能干细胞 (hPSC) 中的两个 PRC2 亚基 JARID2 和 EED 相互作用。JARID2、EED 或 HBL1 的缺失显著增强了心脏从 hPSC 的分化。HBL1 耗竭破坏了全基因组的 PRC2 占据和必需心脏发生基因上的 H3K27me3 染色质修饰,并广泛增强了未分化 hPSC 和后来分化中的心脏发生基因转录。此外,ChIP-seq 显示在 HBL1 和 JARID2 hPSC 中 62 个重叠心脏发生基因上的 EED 占据率降低,表明心脏发生基因的表观遗传状态由多能性阶段的 HBL1 和 JARID2 决定。此外,在心脏发育后,HBL1 的细胞质和细胞核部分可以通过保守的“microRNA-1-JARID2”轴进行串扰,从而调节心脏发生基因转录。总体而言,我们的研究结果阐明了 HBL1 在引导 PRC2 功能在人类早期心脏发生过程中的不可或缺的作用,并扩展了 HBL1 的细胞质和细胞核部分可以协调人类心脏发生的 lncRNA 的机制范围。
摘要:近年来,使用原代T细胞的免疫疗法在某些病理中彻底改变了医疗护理,但是与挑战性细胞基因组版,不足的细胞数量产生,仅使用自体细胞以及缺乏产品标准化有关的局限性限制了其临床使用。通过提供可自我更新的T细胞来源,可以从人类多能干细胞(HPSC)从人多能干细胞(HPSC)产生的T细胞提供巨大的优势,这些源可以很容易地在遗传上进行修饰并促进使用标准化通用的普遍存在的非现成的同种细胞产物和快速临床访问。尽管有潜力,但在进入临床环境之前,必须更好地理解与HPSC区分的T细胞的可行性和功能。在这项研究中,我们从T细胞(T-IPSC)产生了人类诱导的多能干细胞,从而保留已经重新组合的TCR,具有与人类胚胎干细胞(HESC)相同的特性。基于这些细胞,我们通过高效率,造血祖细胞(HPSC)分化了能够自我更新和分化为任何细胞血型的能力,除了DN3A胸腺祖细胞与几个T-IPSC线外。为了更好地理解分化,我们分析了不同细胞类型的转录组亲纤维,并证明与HIPSC分化的HPSC具有与脐带血造血干细胞(HSC)非常相似的pro纤维(HSC)。此外,分化的T细胞祖细胞在胸腺淋巴细胞的DN3A阶段具有类似的胸腺细胞。因此,利用这种方法,我们能够再生治疗性人类T细胞的前体,以便可能治疗多种疾病。
人类多能干细胞(HPSC),例如胚胎干细胞(ESC),种系干细胞和诱导的多脂质干细胞(IPSC),有可能产生用于细胞疗法和再生药物1-4的无可能细胞来源。HPSC的传统扩增需要小鼠喂食器细胞或用细胞外基质(ECM)(例如Matrigel和Geltrex)预涂培养设备,以促进细胞粘附和细胞增殖5,6。然而,小鼠喂食器细胞和基质醇具有特种形式,并且可能有临床使用的风险。当前生产临床级HPSC的当前方案采用了定义的ECM分子,例如体外 - 内染蛋白,层粘连蛋白(层粘连蛋白511),重组层粘连蛋白或层粘连蛋白片段(层粘连蛋白-511 E8),以促进细胞培养物培养物培养物培养物培养物的塑料塑料7,8。在培养基中添加层粘连蛋白片段,玻璃纤维或αI抑制剂(IαI)可以促进HPSC粘附到细胞培养血管9,10上。然而,这些重组蛋白的产生需要复杂的基于哺乳动物的细胞的人体作用。高成本限制了他们用于大众PSC生产的应用。
自 2011-2012 年流感季节以来,HPSC 一直在监测 LTCF 中医护人员 (HCW) 的流感疫苗接种情况。对于 2024-2025 年季节,暂定
摘要 基因组编辑技术的快速发展为治疗肿瘤、心血管、神经退行性疾病和单基因疾病带来了新的希望。最近,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 系统已成为一种强大的基因编辑工具,与传统方法相比,具有编辑效率高、成本低等优势。人类多能干细胞 (hPSC) 具有很强的增殖和分化潜能,已被用于干细胞治疗。二十多年来,hPSC 的潜力和 CRISPR/Cas9 基因组编辑的能力一直在改变医学遗传学的范式。由于 hPSC 被归类为难以转染的细胞,因此迫切需要开发一种合适有效的方法将 CRISPR/Cas9 递送到这些细胞中。本综述重点介绍了在干细胞中递送 CRISPR/Cas9 的各种策略。