二维(2D)板和一维(1D)纳米替伯苯格几何形状的磁性拓扑绝缘子(MTIS)和超导体(SCS)的异质结构已预计宿主分别为宿主,手给了Mathiral Majoragana(Maginala Majorana Edge States(CMESS)和Majorana Boundana Boundate(Majorana Boundate)。我们研究了这种MTI/SC异质结构的拓扑特性,随着几何形状从宽平板变为准1D纳米替比系统的变化,并随着化学电位,磁掺杂和诱导的超导配对电位的函数。为此,我们构建了有效的对称性受限的低能汉密尔顿人,以解决真实空间的结构。对于具有有限宽度和长度的纳米替物几何形状,我们观察到以CMES,MBS和共存的CMES和MBS为特征的不同相,因为化学电位,磁性掺杂和 /或宽度是不同的。
原子上薄的半导体异质结构提供了一个二维(2D)设备平台,用于产生高密度的冷,可控制的激子。中间层激元(IES),绑定的电子和孔定位于分开的2D量子井层,具有永久的平面外偶极矩和长寿命,从而可以根据需要调整其空间分布。在这里,我们采用静电门来捕获并控制它们的密度。通过电气调节IE鲜明的偏移,可以实现2×10 12 cm-2以上的电子孔对浓度。在此高IE密度下,我们观察到指示了指示IE离子化过渡的线宽扩大,而与陷阱深度无关。该失控的阈值在低温下保持恒定,但增加了20 K,与退化IE气体的量子解离一致。我们在可调静电陷阱中对IE离子化的演示代表了朝着实现固态光电设备中偶极激子冷凝物实现的重要步骤。
BACH 光束线通过在 EUV 软 X 射线光子能量范围内结合 PES 和 XAS 提供多光谱技术方法。该光束线提供可选的光偏振、不同环境和各种时间尺度下的高分辨率。此设置可以研究固体表面、界面、薄膜的电子、化学、结构、磁性和动力学特性。此光束线在单个终端站中提供的技术和光谱方法范围是独一无二的。此外,可以原位制备和生长 2D 层、薄金属和氧化物膜、分子层和金属有机结构等样品。
图S4。 扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。 在此示意图之后,任何测得的电流都被迫流过半导体。 (b)与扫描光电流图同时测量的感兴趣区域的激光反射图。 这种测量使我们能够将激光的位置与观察到的信号相关联。 被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。 裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。 进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。 (d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。 (e)和(f)分别为0T和1T显示的类似扫描光电流图。图S4。扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。在此示意图之后,任何测得的电流都被迫流过半导体。(b)与扫描光电流图同时测量的感兴趣区域的激光反射图。这种测量使我们能够将激光的位置与观察到的信号相关联。被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。(d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。(e)和(f)分别为0T和1T显示的类似扫描光电流图。
Moiré超级晶格在Van der Waals的异质结构中的扭曲工程可以操纵山谷中层Incepitons(IXS)的山谷物理学,为下一代谷化设备铺平了道路。然而,到目前为止,在电气控制的异质结构中尚未研究对山谷极化上激素电位的扭曲角度依赖性控制,需要探索下面的物理机制。在这里,我们证明了莫伊尔时期的极化切换和山谷极化程度的依赖性。我们还找到了揭示激子电势和电子孔交换相互作用的扭曲角度调节的机制,这些机制阐明了实验观察到的IXS的扭曲角度依赖性山谷极化。此外,我们根据极化开关实现了可谷化的设备。我们的工作通过在电控制异质结构中调谐扭转角来证明了IXS山谷极化的操纵,这为在互惠设备中开放了电气控制山谷自由度的途径。
*通讯作者。1 Max Planck物质结构和动态研究所,德国汉堡。2物理系,哥伦比亚大学,美国纽约,美国。 3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。 4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。 5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。 6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。 7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。 8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。2物理系,哥伦比亚大学,美国纽约,美国。3 rwth Aachen University和Duture Information Technology的Jara-Fundamentals,Aachen,Aachen,Div foreire der der der statistischen physik。4日本杜斯库巴国家材料科学研究所电子和光学材料研究中心。5日本杜斯库巴国家材料科学研究所材料纳米构造研究中心。6计算量子物理中心,西蒙斯基金会基金研究所,美国纽约,美国。7 Cnano-BiospectRoscopy Group,Dectionalmo de Fisica de Materiales,San Sebasti´an,San Sebasti´an大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。 9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。 法国德国大学学院10大学。8理论物理学研究所和不来梅计算材料科学中心,德国不来梅大学,德国不来梅大学。9 Laboratoire de Lecole de L'Ecole Normale Sup´erieure,Universit´e PSL,CNRS,Sorbonne Universit´e,Paris-Cit´eo,Paris-cit´eo,Paris,Paris,France。法国德国大学学院10大学。
*通讯作者:新泽西州普林斯顿大学化学系Alessio Amaolo,美国,美国,美国,美国,电子邮件:alessioamaolo@princeton.edu。https://orcid.org/0000-0002-9973-6872 pengning Chao,马萨诸塞州剑桥,马萨诸塞州马萨诸塞州马萨诸塞州数学系,美国马萨诸塞州,美国马萨诸塞州02139https://orcid.org/0000-0001-9287-9515 Thomas J. Maldonado和Alejandro W. Rodriguez,普林斯顿大学电气和计算机工程系,普林斯顿大学,普林斯顿大学,NJ 08544,NJ 08544,美国,Maldonado@-mail:maldonado@-mail@maldonado@crinceton.ed.ed.ed.ed.ed.ed.ed.ed.ed.ed。 arod@princeton.edu(a.w.Rodriguez)。https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。 https://orcid.org/0000-0003-3575-5166https://orcid.org/0009-0005-0465-193X(T.J. Maldonado)Sean Molesky,蒙特利尔PolytechniqueMontréal,QuébecH3T 1J4,加拿大蒙特利尔市Polytechnique h3T 1J4,加拿大蒙特利阿尔,蒙特利克尼,eanean.molesky@polymmtky.caca。https://orcid.org/0000-0003-3575-5166
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
抽象过渡金属二甲化合物(TMD)分层半导体在光子,电子,光电和传感器设备的设计中具有巨大的潜力。然而,从近红外(NIR)到短波长红外(SWIR)的TMD的子频率光吸收不足以超出带隙极限。在此,我们报告说,MOS 2 /AU异质结构的子频率光响应可以通过所采用的电极制造方法进行牢固调节。我们在MOS 2 /AU异质结构中观察到多达60%的亚带gap吸收,其中包括杂交界面,其中通过溅射沉积应用了AU层。sub-Bandgap光的吸收大大增强是由于MOS 2和AU形成的平面腔。因此,可以通过改变MOS 2层的厚度来调整吸收光谱。在SWIR波长范围内的光电流增加,由于吸收增加而增加,这意味着可以从可见到SWIR的宽波长检测。我们还以1550 nm的激发波长达到了快速的光响应(〜150 µs)和高响应性(17 mA W -1)。我们的发现展示了一种使用金属电极工程的光学性质调制方法,并在宽带2D材料中实现SWIR光电进行。
磁性隧道连接点(MTJ)是非挥发性随机访问记忆(MRAM)技术的领先存储成分。1,2它由夹在两个磁层层之间的薄隧道屏障层组成,提供快速开关速度,高耐力和低功耗。3,随着大数据和物联网的不断增长,优化了MTJ的运营,以实现较低的能源消耗以获得高密度记忆,并且更快的数据处理变得至关重要。4一种有效且易于访问的方法来操纵MTJ,正在使用电场,该电场在铁磁/铁电力多性异质结构中实现。5 MTJ Spintronic设备的行为和性能受到异质结构之间的界面的显着影响。4因此,实现MTJ的高质量接口对于充分利用其功能并增强数据处理速度至关重要。二维(2D)范德华(VDW)磁铁的出现为结构VDW异质结构提供了有前途的途径,与原子尖锐的互相互相互相互相耦合,6 - 14,这使得它使IT可以探索MTJ Pertronic设备的新颖电子控制。4,15近年来,在全VDW MTJ中,在带有隧道屏障HBN,MOS 2和INSE的全VDW MTJ中,在自旋阀设备中进行了显着的前进。16 - 21个最近的研究在低温下通过VDW异质结构中的电子均值报道了TMR。23 - 2516然而,在室温下实现TMR操作的电气控制仍然是一个持续的挑战,迄今为止,VDW异质结构尚未实现室温可调TMR。永远,发现2D VDW铁磁(FM)金属Fe 3 Gate 2,22,其在室温高于室温(居里温度≈350 - 380 K)上表现出强烈的铁磁作用,并稳健的大型垂直磁性各向异性,可以打开VDW旋转器件中房间温度旋转操作的可能性。