在图案化的周期性周期性纳米线上大大增强了Faraday旋转,在二晶型铁石榴石膜上[10]。大多数表面等离子体的研究都集中在金属等贵金属上。但是,这些金属必须与光学活性材料结合使用,以提供血浆的主动控制。特别是,可以用应用于磁性金属杂种系统的磁场来控制磁质量[11,12]。磁光kerr效应(moke)将线性极性光转换为Mo材料中的椭圆极化光。最近,Moke已用于检测磁性纤维中的SOC相关扭矩,例如通过电子旋转角动量和光线之间的相互作用,例如绝缘Yttrium-Iron Garnet(YIG)和金属COFEB以及重金属PT异质结构[13,14]。YIG中的摩克很小,对于近红外波长。用二晶体或稀土元素代替Yttrium可以增强摩克,而磁矩只有很小的变化[15-18]。双掺杂的YIG中的大Mo效应是由原子内轨道偶极子偶极转变在CE的4F和5D状态之间或Inter- inter-
摘要:基于应变的带结构工程是一种强大的工具,可以调整半导体纳米结构的光学和电子特性。我们表明,我们可以调整INGAAS半导体量子井的带结构,并通过将其整合到卷起的异质结构中并改变其几何形成,从而改变发光的光线。来自光致发光和光致发光激发光谱的实验结果表明,由于重孔在卷起的Ingaas量子井中的轻孔状态与轻孔的反转,价带状态的强型能量转移与结构相比具有强大的能量转移。带状态的反转和混合会导致滚动量子井的光学选择规则发生强烈的变化,这些量子井也显示出传导带中消失的自旋极化,即使在近乎谐振的激发条件下也是如此。的频带结构计算以了解电子过渡的变化,并预测给定几何构造的发射和吸收光谱。实验与理论之间的比较表明了一个极好的一致性。这些观察到的基本属性的深刻变化可以作为开发量子信息技术新颖的光学设备的战略途径。关键字:频带结构反演,半导体量子井,光学选择规则,滚动微管,拉伸和压缩混合状态,弯曲的半导体膜■简介
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
半导体P - i -n异质结构被广泛用作辐射探测器,并在光电子中具有多种应用[1-4]。在这种半导体结构中的能量吸收高于禁止带宽度的光导致电子孔对产生。对,在耗尽的I -Area中产生或从I -Area到掺杂n-和P-层的深度的扩散长度的距离与电场分开,因此电流出现在外部电路中[4]。光电流值将用载体的漂移电流定义,该载体在I -Area中产生,以及在I -Area外产生的载体的扩散电流。在某些条件下,半导体结构的光响应可以检测到多个各种量子振荡事件。例如,由于光电声发射的光激发电子和孔的放松导致光电流振荡,具体取决于刺激光子的能量[5]。在GAAS/ALAS或INGAN/GAN P -I -N超晶格中观察到来自偏置电压的光电流振荡[6,7]。在工作[8]中,研究了P - I -N-二极管在光谱光谱上的I -i -i -n-二极管中的INAS层的影响,并显示了此类异质系统对创建敏感光探测器的效率。后来,在这样的单屏障GAAS/ALAS异质结构中(见图1)在辐照时观察到巨大的光电流振荡[9,10],光子能量高于GAA中的光子能量高于禁止带宽度,而GAA中的光子宽度高,这似乎是多种共振 - 类似于Volt-Ampere特性(VAC)的特殊性。振幅为光电流时的平均光值的20%,其光线为λ= 650 nm,而在具有单个隧道屏障的p - i -i -n -diodes中,这是不可能的,这是不可能的。观察到了那个时期
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
由于其独特的光学和电子特性,垂直的范德华异质结构(VDWH)引起了光电应用的大量关注,例如光检测,光收获和光发射二极管。为了完全利用这些特性,了解跨VDWH的界面电荷转移(CT)和重组动力学至关重要。然而,界面能量和缺陷态对石墨烯转变金属二北核化金(GR-TMD)VDWH的界面CT和重组过程的影响仍在争论中。在这里,我们研究了具有不同化学成分(W,MO,S和SE)的GR-TMD VDWH中的界面CT动力学和可调的界面能量。We demonstrate, using ultrafast terahertz spectroscopy, that while the photo-induced electron transfer direction is universal with graphene donating electrons to TMDs, its efficiency is chalcogen-dependent: the CT efficiency of S atom-based vdWHs is 3–5 times higher than that of Se-based vdWHs thanks to the lower Schottky barrier present in S-based vdWHs.相比之下,从TMD到GR的电子反传递过程定义了电荷分离时间,它依赖金属依赖性,并由TMDS的中间隙缺陷水平支配:W过渡金属基于vDWH的电荷分离极为长,远超过1 ns,这比基于MO的VDWH远超过了PS Experation 10 s的基于MO的VDWH。与基于MO的TMD相比,这种差异可以追溯到基于W的TMD中报告的更深层次的中间隙缺陷,从而导致了从被困状态到石墨烯的后电子转移的变化能量。我们的结果阐明了界面能量学和缺陷的作用,通过在GR-TMD VDWH中定制TMD的化学组成和重组动态,这是优化光电设备的优化,尤其是在光电检测领域中。
太阳能转化为电能是一种很有前途的清洁能源,可为未来更可持续的技术格局提供动力。尽管传统硅基太阳能电池得到了广泛应用,但不断提高太阳能转化为电能的转换效率仍然是一项艰巨的挑战。传统晶体硅 pn 结太阳能电池受到光生电子空穴对非辐射复合的困扰 [1],这严重限制了其太阳能转化为电能的效率。[2] 硅太阳能电池还需要使用更厚的层来实现更长的光路,从而获得更好的光吸收,这从根本上限制了它们在超紧凑和低质量太阳能电池设计中的应用。[3] 寻找超越传统硅 pn 结太阳能电池的新型纳米材料和器件结构仍然是一个悬而未决的研究挑战,迫切需要解决。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
[1] D. Aoki,A。Huxley,E。Desolution,D。Braithwaite,J。Flouquet,J。P. Brison,Eve,C。Paulsen,Nature 2001,413。[2] F. S. Bergeret, A. F. Volcov, K. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B. B.模式。物理。2005,77。[3] A. I. Buzdin,修订版。模式。物理。2005,77。[4] M. Eschrig,T。Löfwander,Nat。物理。2008,4,138。 [5]圣约翰,L。Xie,J。J。Wang A. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。2008,4,138。[5]圣约翰,L。Xie,J。J。WangA. Bernevig,A。Yazdani,Science 2017,358。 [6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。 R. [7] R. Cai,Ye,P.LV,Y。 公社。 2021,12。A. Bernevig,A。Yazdani,Science 2017,358。[6] S. Ran,C。Eckberg,Q. P. Ding,Y。Furukawa,T。Metz,Science,2019,365。R. [7] R. Cai,Ye,P.LV,Y。公社。2021,12。
金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,金属单核化杂质中的厚度和扭曲角度依赖性层间激素wenkaiZheng§,⊥,⊥,lixiang§,⊥,⊥,felipe dequesada˧,£,£,Mathias Augustinǂ,Mathias Augustinǂ,ƪ,