由于记录过程繁琐,脑电图 (EEG) 数据集通常较小且维数较高。在这种情况下,强大的机器学习技术对于处理大量信息和克服维数灾难至关重要。人工神经网络 (ANN) 在基于 EEG 的脑机接口 (BCI) 应用中取得了良好的效果,但它们涉及计算密集型的训练算法和超参数优化方法。因此,虽然质量与成本之间的权衡通常被忽视,但意识到这一点却大有裨益。在本文中,我们将基于遗传算法的超参数优化程序应用于卷积神经网络 (CNN)、前馈神经网络 (FFNN) 和循环神经网络 (RNN),所有这些网络都是故意浅显的。我们比较了它们的相对质量和能量时间成本,但我们也分析了具有相似精度的同类型网络的结构复杂性的变化。实验结果表明,优化过程提高了所有模型的准确率,并且只有一个隐藏卷积层的 CNN 模型可以与 6 层深度信念网络相等或略胜一筹。FFNN 和 RNN 无法达到相同的质量,尽管成本明显较低。结果还强调了这样一个事实,即同一类型网络的大小不一定与准确率相关,因为较小的模型在性能上可以匹敌甚至超越较大的模型。在这方面,过度拟合可能是一个促成因素,因为深度学习方法在有限的训练示例下会遇到困难。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
抽象生成深度学习体系结构可以产生现实的高分辨率假图像,具有潜在的社会含义。评估这项技术的风险对公众需要更好地了解新颖生成方法可以生成现实数据的条件。在这种情况下的一个关键问题是:生成逼真的图像,特别是针对利基领域的真实图像有多容易。实现特定图像内容所需的迭代过程很难自动化和控制。尤其是对于罕见的阶层,很难评估忠诚度,这意味着生成的方法是否会产生现实的图像和对齐方式,这意味着(井)如何以人类的投入来指导一代。在这项工作中,我们对生成体系结构进行了大规模的经验评估,以生成合成卫星图像。我们专注于核电站作为罕见对象类别的一个例子 - 由于全球只有大约400个设施,因此对于许多其他情况,这种限制是示例性的,在许多其他情况下,培训和测试数据受到现实世界实例的限制限制的限制。我们通过从游戏引擎中获得的两种模式,文本输入和图像输入来生成综合图像,该图像允许对建筑物布局进行详细规范。生成的图像通过常用的指标进行评估,以进行自动评估,然后与我们进行的用户研究的人类判断进行比较,以评估其可信度。我们的结果表明,即使对于稀有物体,具有文本或详细建筑布局的真实合成卫星图像的产生也是可行的。但是,与以前的工作相一致,我们发现自动指标通常与人类的感知不符 - 实际上,我们发现常用的图像质量指标与人类评分之间存在很强的负相关性。我们认为,我们的发现使研究人员能够更好地评估不同生成方法的优势和劣势,尤其是针对利基领域和稀有物体类别,并可以帮助指导未来的生成方法改进。
摘要 — 遥感技术是全球海洋表面监测的重要环节,雷达是检测海洋污染的有效传感器。当局在实际使用时,通常必须在覆盖面积和雷达收集的信息量之间做出权衡。为了确定最合适的成像模式,基于接收器操作特性曲线分析的方法已应用于由两个在 L 波段运行的机载系统收集的原始数据集,这两个系统都具有非常低的仪器本底噪声。该数据集是在海上控制释放矿物油和植物油期间获得的。研究了各种与极化相关的量,并评估了它们检测浮油覆盖区域的能力。本文报告了主要极化参数的相对顺序。当传感器的本底噪声足够低时,建议使用 HV,因为它提供最强的浮油 - 海面对比度。否则,VV 被发现是检测海面浮油最相关的参数。在所有研究的四极化设置中,与单极化数据相比,没有发现显著的附加值。更具体地说,通过增加仪器噪声水平,证明了所研究的结合四个极化通道的极化量具有主要由仪器本底噪声(即噪声等效西格玛零)驱动的检测性能。该结果是通过向原始合成孔径雷达 (SAR) 数据逐步添加噪声获得的,表明清洁海域和污染区域之间的极化区分主要源于单次反弹散射和噪声之间的差异化行为。因此,使用以低仪器本底噪声收集的 SAR 数据证明了矿物和植物油覆盖的海面雷达散射与布拉格散射没有偏差。
摘要 — 运动想象 (MI) 分类一直是基于脑电图 (EEG) 的脑机接口中的一个重要研究课题。在过去的几十年里,MI-EEG 分类器的性能逐渐提高。在本研究中,我们从时频分析的角度扩展了基于几何深度学习的 MI-EEG 分类器,引入了一种称为 Graph-CSPNet 的新架构。我们将这类分类器称为几何分类器,强调它们在源自 EEG 空间协方差矩阵的微分几何中的基础。Graph-CSPNet 利用新颖的流形值图卷积技术来捕获时频域中的 EEG 特征,为捕获局部波动的信号分割提供了更高的灵活性。为了评估 Graph-CSPNet 的有效性,我们使用了五个常用的公开 MI-EEG 数据集,在十一种场景中的九种中实现了接近最佳的分类准确率。Python 存储库可在 https://github 找到。 com/GeometricBCI/Tensor-CSPNet-and-Graph-CSPNet。
表 1-1:Vision-1 的主要特性 ...................................................................................... 5 表 1-2:预期产品和传感器图像质量性能指标 .............................................................. 6 表 2-1:三种成像模式:条带模式、立体模式和区域模式 ...................................................... 7 表 3-1:Vision-1 光谱带 ...................................................................................................... 8 表 3-2:Vision-1 相对光谱带响应 ...................................................................................... 8 表 3-3:每个 Vision-1 波段的太阳光谱辐照度 ............................................................................. 10 表 5-1:DIMAP 元数据文件描述 ............................................................................................. 15 表 5-2:通用 Vision-1 产品文件结构 ............................................................................................. 16 表 5-3: 和 详细描述 ............................................................................. 17 表 5-4:Vision-1 产品文件 ............................................................................................................. 17 表 6-1:一项任务摘要 ............................................................................................................. 18 表 6-2:One Tasking 选项概述 ...................................................................................................... 19 表 6-3:OneDay 参数 .............................................................................................................. 20 表 6-4:OneNow 参数 ............................................................................................................ 21 表 6-5:OnePlan 参数 ............................................................................................................. 22 表 6-6:OneSeries 常规参数 ............................................................................................. 24 表 6-7:OneSeries 关键参数 ............................................................................................. 24 表 6-8:多周期监控所需的详细信息 ............................................................................................. 25 表 6-9:定期监控所需的详细信息 ............................................................................................. 26 表 6-10:One Tasking 规范 ............................................................................................................. 28 表 8-1:订单通知 ............................................................................................................................. 31 表 8-2:根据处理级别的交付时间 ............................................................................................. 31
根据 JDL 数据融合组过程模型,在 0、1、2 和 2+/3 级进行数据和信息融合。为了支持多传感器 IMINT 和 GMTI 融合和 3D 可视化,我们构建了阿拉巴马州莫比尔码头和周边地区的 3D 站点模型,该模型允许使用我们现有的图像挖掘工具进行搜索,并提供 COP 环境,可以在其中模拟和可视化场景。我们开发了用于模拟交通和编写单个车辆移动脚本的软件,以支持场景创建。我们探索了几个新概念来支持 2+/3 级的更高级别的信息融合。一种方法源于对动态脉冲信息网络及其同步形式的神经处理的洞察。这些网络可以以关系和学习到的关联的形式绑定数据和语义知识。我们证明了使用这些网络在移动数据集中学习动态城市场景中移动车辆之间的简单关联的可行性。第二种方法涉及从图像和/或文本数据中提取知识结构。我们开发了两种从数据集中的概念共现中发现分类法的机制。我们证明了这些方法对融合图像和文本语料库的有效性。最后一种方法利用神经启发机制从移动的跟踪实体中学习正常行为模型。这些模型随后被使用
Pléiades 双星是分辨率极高的卫星,标准配置是提供 50 厘米正射影像产品。SPOT 6 和 SPOT 7 旨在将 SPOT 5 的成功扩展到 1.5 米产品系列。该卫星群位于同一轨道上,具有前所未有的反应能力,可在同一天重访地球上的任何地方。每天的多个任务计划可实现无与伦比的数据收集优化:可以考虑不可预见的天气变化以及最后一刻的请求,以提供一流的服务。
摘要 — 我们在此介绍了用于训练 EEG BCI 解码器的元学习理念。元学习是一种训练机器学习系统使其学会学习的方法。我们将元学习应用于简单的深度学习 BCI 架构,并将其与同一架构上的迁移学习进行比较。我们的元学习策略通过寻找 BCI 解码器的最佳参数来运行,以便它可以在不同用户和记录会话之间快速推广 - 从而也可以快速推广到新用户或新会话。我们在 Physionet EEG 运动意象数据集上测试了我们的算法。我们的方法将运动意象分类准确率提高了 60% 到 80%,在小数据条件下优于其他算法。我们相信,建立元学习或学习学习方法将有助于神经工程和人机交互应对快速设置神经信号解码器的挑战,使其更适合日常生活。
摘要 脑机接口 (BCI) 处理算法需要强大的计算设备才能实时执行。在本文中,提出了一种用于对代表两个运动想象任务的脑电图 (EEG) 信号进行分类的硬件高效设计,并在现场可编程门阵列 (FPGA) 上实现。小波包分解 (WPD) 用作特征提取算法,线性判别分析 (LDA) 用作分类器。该系统是使用 System Generator 设计的,并使用硬件/软件联合仿真在 Zybo 板上实现。仿真结果显示,在两个运动想象任务的分类过程中准确率为 80%,时钟频率为 1.5 MHz 时延迟为 7.5 毫秒,功耗为 0.102 W。此外,所使用的 FPGA 资源量少于以前的类似工作,证明设计系统不仅实现了良好的准确性,而且以高效的方式实现了这一目标。
