癌症免疫疗法在治疗各种恶性肿瘤方面取得了巨大的进步。成功免疫疗法的最大障碍是癌细胞的免疫抑制肿瘤微环境(TME)和低免疫原性。要成功进行免疫疗法,必须将“冷” TME转换为“热”免疫刺激状态,以激活残留的宿主免疫反应。为此,应损坏TME中的免疫抑制平衡,应诱导免疫原性癌细胞死亡以适当刺激杀死肿瘤的免疫细胞。光动力疗法(PDT)是诱导癌细胞免疫原性死亡(ICD)并破坏免疫限制性肿瘤组织的有效方法。PDT会触发链反应,该链反应将使TME“热”并具有ICD诱导的肿瘤抗原呈现给免疫细胞。原则上,PDT和免疫疗法的战略组合将协同作用,以增强许多棘手的肿瘤的治疗结果。采用纳米载体的新技术是开发出来的,以提供光敏剂和免疫治疗剂对TME有效。新一代纳米医学已开发用于PDT免疫疗法,这将加速临床应用。
理由:据报道,肿瘤细胞表观遗传学,尤其是染色体可及性,与肿瘤免疫景观和免疫疗法密切相关。但是,确切的机制仍然未知。方法:使用全外活体测序分析13个用PD1免疫疗法治疗的结直肠肿瘤样品。使用测序(ATAC-SEQ)和RNA测序进行转座酶可访问的染色质测定法用于检测肿瘤细胞的染色体可及性状态和筛查调节途径。结果:Polybromo-1(PBRM1)是12个与免疫疗法敏感性相关的体细胞突变频率最高的基因之一。PBRM1/PBRM1结直肠癌的缺乏症促进了体内和体外微环境中CD8 + T和NK细胞的PD-1免疫疗法敏感性以及CD8 + T和NK细胞的趋化性。ATAC测序表明,SWI/SNF复合物的关键成分的缺失增加了肿瘤细胞中染色体可及性的增加,并通过激活NF-κB信号传导途径触发细胞因子的释放,例如CCL5和CXCL10。在BALB/C小鼠或结直肠患者衍生的肿瘤器官(PDTOS)中应用ACBL1(PRM1的ProC抑制剂)显着促进了对PD1抗体免疫疗法的敏感性。结论:我们的研究确定PBRM1/PBRM1缺乏症与结直肠癌的PD1免疫治疗敏感性呈正相关。基本的分子机制涉及调节染色体可及性,NF-κB信号通路的激活以及微环境中的免疫细胞浸润。这些发现确定了潜在的分子靶标,以增强结直肠癌的免疫疗法。
1。肾脏科学与泌尿外科研究中心,伊朗德黑兰Baqiyatallah医学科学大学临床科学研究所。2。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。 3。 NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。新加坡新加坡国立大学Yong Loo Lin医学院药理学系。3。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。 4。 意大利巴勒莫大学90123生物学,化学和药物科学与技术系。 5。 细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。 6。 纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。 7。 美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。 8。 伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。NUS癌症研究中心(N2CR),新加坡新加坡国立大学Yong Loo Lin医学院。4。意大利巴勒莫大学90123生物学,化学和药物科学与技术系。5。细胞系统和解剖学系,UT Health San Antonio,Long School of Medicine,San Antonio,美国德克萨斯州。6。纳米比奥高科技材料研究中心,生物科学与生物工程系,Inha University,100 Inha-Ro,Incheon 22212,大韩民国。7。美国马萨诸塞州波士顿的Deepliestix Inc.体外视觉部。8。伊朗Ahvaz Ahvaz Shahid Chamran大学兽医学院生物化学与分子生物学系。
结核病 (TB) 是由结核分枝杆菌引起的,是全球单一感染病原体导致死亡的主要原因。结核分枝杆菌感染还可能导致临床慢性感染,称为潜伏性结核感染 (LTBI)。与目前有限的治疗方法相比,几种亚单位疫苗表现出免疫治疗效果,并被纳入临床试验。在本研究中,Ag85B 亚单位疫苗与新型粘膜佐剂 c-di-AMP (Ag85B:c-di-AMP) 经鼻腔内注射给持续性结核分枝杆菌 H37Ra 感染小鼠模型,该模型也表现出 LTBI 的无症状特征。与Ag85B免疫相比,Ag85B:c-di-AMP疫苗接种诱导了更强的体液免疫反应,显著更高的CD4 + T细胞募集,增强了肺中Th1/Th2/Th17谱反应,减轻了肺病理损害,并降低了小鼠体内的结核分枝杆菌负荷。总之,Ag85B:c-di-AMP黏膜途径免疫对持续性结核分枝杆菌H37Ra感染具有免疫治疗作用,而c-di-AMP作为一种有希望的潜在黏膜佐剂,可进一步用于持续性结核分枝杆菌感染以及LTBI的治疗或预防疫苗策略。
1 Department of Experimental Hematology, Instituto de Investigacio ´ n Sanitaria-Fundacio ´ n Jime ´ nez Diaz (IIS-FJD), Madrid, Spain, 2 Cancer Immunotherapy Unit (UNICA), Department of Immunology, Instituto de Investigacio ´ n Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain, 3 Department of Pediatric Hematology and Oncology, Advanced Therapies Unit, Fundacio ´ n Investigacio ´ n Biome ´ dica Hospital Infantil Universitario Niño Jesu ´ s, Madrid, Spain, 4 Cellular Biotechnology Unit, Instituto de Salud Carlos III (ISCIII), Madrid, Spain, 5 La Paz Hospital Institute for Health Research (IdiPAZ), Hospital Universitario La Paz. Universidad Auto ´ noma de Madrid (UAM), Madrid, Spain, 6 Immunity, Immunopathology and Emergent Therapies Group. Instituto de Investigaciones Biomedicas Sols- Morreale. CSIC-UAM, Madrid, Spain
弥漫性固有的庞然神经胶质瘤(DIPG)是一种侵袭性脑肿瘤,发生在脑干的PON中,占所有脑干神经胶质瘤的80%以上。诊断时的中位年龄为6至7岁,诊断后2年的总生存率不到10%,在5年后不到1%。DIPG在手术上是无法访问的,放射疗法仅提供短暂的益处,而死亡随之而来的无情局部肿瘤发生了。dipgs现在是儿童脑肿瘤死亡的主要原因,每个人多年(YLL)的社会癌症负担超过67,而肺和乳腺癌分别为14和16 YLL。已经对DIPGS儿童进行了95次临床药物试验,所有这些试验都无法提高生存率。迄今为止,没有单一或组合化学治疗策略已经成功,因为我们无法鉴定该疾病的靶向药物并在完整的血脑屏障(BBB)中输送这些药物。因此,越来越重视DIPG的免疫疗法研究,并探索了诸如嵌合抗原受体T(CAR-T)细胞,免疫检查点阻滞,癌症疫苗和自体细胞转移疗法等疗法。在这里,我们回顾了识别影响DIPG免疫疗法发展的遗传因素的最新进展。此外,我们探索了新兴技术,例如潜在的组合方法来处理DIPG的磁共振引导聚焦超声(MRGFU)。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月7日发布。 https://doi.org/10.1101/2023.12.06.570390 doi:Biorxiv Preprint
临床标识符:NCT02571166竞争利益:JT和SG是Sanofi Pasteur的现任员工。ASM是Cero和Aicuris的顾问。CJ已从赛诺菲,Genocea,Vical和Gilead向华盛顿大学获得了机构研究资金,并且是Abbvie和Gilead的顾问。dmk已获得赛诺菲巴斯德,免疫设计公司和有关疱疹疫苗的免疫疗法的研究资金,曾是疱疹疫苗生物医学研究模型的顾问,并且是有关涉及疱疹疫苗的专利的共同寻求者。lc是Immune Design Corp的科学顾问委员会,并持有股票(<1%的公司),并且是一项涉及潜在的HSV疫苗开发的专利列出的共同文献。kjl已获得赛诺菲和Advenus免疫疗法的薪水支持,并且是华盛顿大学涉及疱疹疫苗的专利的共同服务。
l -1MTrp,定量和纵向可视化全身 IDO1 动态。具体来说,我们首先评估了具有不同 IDO1 表达模式的对侧人类肿瘤的小鼠中的 11 C- l -1MTrp。然后,我们应用 11 C- l -1MTrp 纵向监测用 1-甲基- l -色氨酸加化疗药物或针对程序性细胞死亡 1 和细胞毒性 T 淋巴细胞相关蛋白 4 的抗体治疗的免疫功能正常的黑色素瘤小鼠的全身 IDO1 变化。结果 11 C- l -1MTrp 正电子发射断层扫描 (PET) 成像准确描绘了异种移植小鼠模型中的 IDO1 表达。此外,我们能够可视化肠系膜淋巴结 (MLN) 中的动态 IDO1 调节,这是肿瘤外 IDO1 靶点,其中 11 C- l -1MTrp 的摄取百分比准确地注释了临床前模型中多种联合免疫疗法的治疗效果。值得注意的是,MLN 中的 11 C- l -1MTrp 信号强度与治疗肿瘤的特定生长率呈负相关,这表明 MLN 中的 IDO1 表达可以作为癌症免疫设定点的新生物标志物。结论 IDO1 与 11 C- l -1MTrp 的 PET 成像是一种评估多种组合免疫疗法治疗效果的可靠方法,可提高我们对 IDO1 方案的优点和挑战的理解。正在进一步验证该动物数据在人类中的应用。我们设想,我们的研究结果将为在组合癌症免疫治疗中无创地可视化每个患者的个体反应,并制定最佳的个性化组合策略提供一个潜在的精准医疗范例。