时间窗口的选择主要影响分段特征提取程序的有效性。我们提出了一种增强的模式袋表示,可以在宽窗口范围内捕获大脑动态的高级结构。因此,我们为短时公共空间模式算法引入了具有扩展窗口长度的增强实例表示。基于多实例学习,通过稀疏回归选择相关的模式袋以输入袋分类器。所提出的高级结构表示有两个贡献:(i)提高双条件任务的准确性,(ii)通过学习到的稀疏回归拟合更好地理解动态大脑行为。使用支持向量机分类器,在公共运动图像数据集(左手和右手任务)上实现的性能表明,所提出的框架执行的结果非常有竞争力,对脑电图记录的时间变化具有鲁棒性并有利于类可分性。
本文介绍了一种新颖的方法,可以使用极端点,即每个对象的最上方,最左侧,最左侧,bottommost和最右点进行学习。这些要点在现代边界框注释过程中很容易获得,同时为预分段提供了强大的线索,因此可以使用盒子监督的方法以相同的注释成本来提高性能。我们的工作将极端点视为真实实例掩盖的一部分,并传播它们以识别潜在的前面和背景点,它们全部用于训练伪标签生成器。然后,发电机给出的伪标签又用于监督我们的最终模型。在三个公共基准测试中,我们的方法大大优于现有的盒子监督方法,以完全监督的对应物进一步缩小了差距。尤其是,当目标对象分为多个部分时,我们的模型会生成高质量的掩码,而以前的盒子监督方法通常会失败。
摘要 目前,深度学习(DL)被广泛用于解决非常复杂的任务。然而,DL模型的训练需要庞大的数据集和漫长的训练时间。我们引入了一种新颖的量子实例选择(IS)方法,该方法将训练数据集的大小减少了多达 28%,同时保持了有效性,提高了训练效率和可扩展性。我们的方法利用量子退火(QA),一种特定的量子计算范式,可以解决优化问题。这是首次尝试使用 QA 解决 IS 问题,我们为其提出了一种新的二次无约束二元优化(QUBO)公式。对多个自动文本分类(ATC)数据集进行的大量实验表明,我们的解决方案是可行的,并且与当前最先进的 IS 解决方案具有竞争力。
收到和初步评估涵盖涵盖06名跨国公司的指控和肢解的建议,并提出了对所指控的收到的反对的反应,该指控收到了个人提交实例的个性化承认,该实例接受了IWG-NCP的特定实例,而IWG-NCP收到了涉嫌收到涉嫌的良好信息的核对信息,以提供对良好的信息,并将其付诸实践的核对措施,并付诸实践,并通过核对核对的良好信息,并确定了良好的信息。据称接受优质办公室的办公室,通过寓言接受优质办公室的接受,通过双方接受指控的批准,双方首次调解第三个调解会议第三个调解会议介绍第三次调解会议介绍的第三个调解会议介绍,该结论是由最终声明草案批准的批准批准的一份批准,该宣言批准了一份批准的批准,该法案批准了一份最终宣布的批准。最终声明的IWG-NCP出版物的最终声明
摘要。监视系统的兴起导致收集的数据呈指数增长,从而在深度学习方面有了一些进步来利用它们并自动化自治系统的任务。车辆检测是智能车辆系统和智能运输系统领域的关键任务,使得控制交通密度或检测事故和潜在风险是可能的。本文提出了一个最佳的元方法,可以应用于任何即时分割模型,例如蒙版R- CNN或yolact ++。使用这些模型和超分辨率获得的初始检测,进行了优化的重新指导,允许检测未鉴定的元素并提高其余检测的质量。超分辨率的直接应用是有限的,因为实例分割模型根据固定维度处理图像。因此,如果超过超过该固定尺寸的尺寸,该模型将再次重新汇总,从而失去所需效果。这种元方法的优点主要在于不需要修改模型体系结构或重新培训它。无论给出的输入的图像的大小如何,都将生成符合对象分割模型定义维度的超级分辨区域。应用我们的建议后,实验显示了CityScapes数据集Jena序列中使用的Yolact ++模型的提高高达8.1%。
自学学习(SSL)是一种无监督的表示技术,是深度学习中的热门话题。它涉及解决一个人工任务,该任务允许网络学习数据集的语义。然后可以使用所得的特征提取器进行传输学习,以减少解决实际下游任务所需的标记示例数量。这对于计算机辅助诊断具有巨大的实用价值,因为标签需要医学专家,这很昂贵[1]。SSL方法通常应用于图像补丁(例如拼图求解[2],上下文预测[3],对比度学习[4]或视觉变压器[5]),而下游任务通常与整个图像一起使用。此差异要求在两个单独的顺序步骤中实现SSL并转移学习。一种固有地使用补丁的技术是多个实例学习[6],因此对于许多SSL方法而言,可能是更自然的选择。
摘要在本文中,我们考虑了从机器人箱拾取设置中从RGB或灰度相机图像中分割多个实例的问题。用于解决此任务的先前方法通常是在Mask-RCNN框架上构建的,但是它们需要大量注释的数据集进行填充。取而代之的是,我们在几个拍摄设置中考虑任务,并在trinseg中考虑了基于mask-rcnn的透明对象的数据效率和健壮的实例分割方法。我们在trinseg中的关键创新是双重的:i)一种被称为transmixup的新颖方法,用于使用合成透明的对象实例生成新的训练图像,该图像是通过空间转换带注释的示例创建的; ii)一种评分理想对象模板的预测段和旋转之间一致性的方法。在我们的新评分方法中,空间转换是由辅助神经网络产生的,然后将得分用于填充不一致的实例预测。为了证明我们方法的效果,我们介绍了一个新的几种数据集的实验,该数据集由七个类别的非偏见(透明和半透明)对象组成,每个类别的大小,形状和透明度的透明度变化。我们的结果表明,Trinseg实现了最先进的性能,在MIOU中提高了14%以上的细化面膜RCNN,同时需要很少的带注释的培训样本。
摘要。预测隐藏在com-plex上下文中的对象的实例级掩码是伪装实例分割(CIS)的目标,这一任务因伪装的obs obsptss and Anckatiks之间的惊人相似之处而复杂。伪装观察的各种外观,包括不同的角度,部分可见性和模棱两可的信息,进一步加剧了这一挑战。先前的作品考虑在高不确定性区域内clasifulsiful sifialpixels,而无需考虑其文本语义,从而导致许多假阳性。我们提出了一种称为Mask2Camouflage的新颖方法,该方法同时增强了上下文特征的建模,并完善了实例级别的预测地图。mask2Camouflage利用多尺度功能集成了骨干线中提取的功能。然后,引入了全局细化的交叉注意模块(GCA),以补充前景面罩和背景掩盖,以减少假阳性。fur-hoverore,通过模拟全球换档聚类过程,我们介绍了全球偏移的多头自我注意力(GSA),该过程使对象查询不仅可以从早期功能中捕获信息,还可以从结构性概念中捕获信息,从而降低与评估的数据验证的掩体对象检测任务中的类内部问题。与15种最先进的方法相比,我们的Mask2Camouflage显着提高了伪装实例细分的性能。我们的代码可在https://github.com/underlmao/mask2camouflage上找到。
文本到图像扩散生成模型可以以繁琐的及时工程为代价产生高质量的图像。可以通过引入布局条件来提高可控性,但是现有方法缺乏布局编辑能力和对对象属性的细粒度控制。多层生成的概念具有解决这些局限性的巨大潜力,但是同时生成图像实例与场景组成限制了控制对细粒对象属性的控制,在3D空间和场景操作能力中相对定位。在这项工作中,我们提出了一种新型的多阶段生成范式,该范式专为细粒度的控制,灵活性和互动性而设计。为了确保对实例属性的控制,我们设计了一个新颖的训练范式,以使扩散模型适应带有透明度信息的RGBA图像,以生成孤立的场景组件。为了构建复杂的图像,我们采用了这些预生成的实例,并引入了一个多层复合生成过程,该过程平滑地组件在现实的场景中。我们的实验表明,我们的RGBA扩散模型能够生成具有对对象属性的精确控制的多样化和高质量实例。通过多层组成,我们证明了我们的方法允许从高度复杂的提示中构建和操纵图像,并通过对物体外观和位置进行精细的控制,从而获得比竞争方法更高的控制程度。